Influence of intermixing at the Ta/CoFeB interface on spin Hall angle in Ta/CoFeB/MgO heterostructures

M. Cecot, ¹ Ł. Karwacki, ² W. Skowroński, ¹ J. Kanak, ¹ J. Wrona, ³ A. Żywczak, ⁴ L. Yao, ⁵ S. van Dijken, ⁵ J. Barnaś, ² and T. Stobiecki ¹

 1AGH University, Department of Electronics 2Adam Mickiewicz University, Faculty of Physics 3Singulus Technologies AG

⁴AGH University, Academic Center of Materials and Nanotechnology ⁵Aalto University School of Science, Department of Applied Physics

Spin-orbit interactions provides mechanisms of spin polarization induction even in non-magnetic metals. In adjacent ferromagnetic layer, the effective magnetic fields are generated, which can lead to magnetization switching or dynamics precession through spin-orbit-torque. Magnetic and structural measurements indicate that Ta/CoFeB interface can not be considered as a sharp transition. Fitting to the temperature dependence of damping-like and field-like torques were performed with an additional contribution from the Ta/CoFeB interface taken into account in the spin diffusion model. In this approach, the temperature variations of the spin Hall angle in the Ta underlayer and at the Ta/CoFeB interface are determined separately.

MC and WS acknowledge National Science Center, Poland, Grant No. 2015/17/D/ST3/00500, TS. acknowledges the statutory Grant 11.11.230.017.