Lower critical field in the two-band superconductor $LaRu_4As_{12}$

<u>J. Juraszek</u>,¹ R. Wawryk,¹ Z. Henkie,¹

M. Konczykowski,² and T. Cichorek¹

¹Institute of Low Temperature and Structure Research, PAS, Wrocław, Poland ²Université Paris Saclay, École Polytechnique, Palaiseau, France

The filled skutterudite compound LaRu₄As₁₂ displays several features which point at a non-singlet superconducing order parameter ($T_c = 10.4$ K) [1], although the cubic crystal structure does not favor the emergence of multiple energy gaps. Here, we present results of a comparative study of the lower critical field (H_{c1}) for LaRu₄As₁₂ and the one-band BCS superconductors LaOs₄As₁₂ ($T_c = 3.2$ K) and PrRu₄As₁₂ (T_c = 2.3 K). The $H_{c1}(T)$ dependences were determined utilizing miniaturized 2DEG Hall sensors. Exceptionally for LaRu₄As₁₂, we have observed a pronounced enhancement of $H_{c1}(T)$ below $T/T_c \approx 0.35$. Since such enhancement is absent in the closely related superconductors down to $T/T_c \approx 0.1$, anisotropy effects must be of minor significance. Furthermore, a sharp kink in the $H_{c1}(T)$ behavior correlates with anomalies in the penetration depth [2]. Apparently, these findings reflect a faster drop of the superfluid density at low temperatures due to different contributions from two bands. Our results indicate that $H_{c1}(T)$ is a very useful tool to investigate multiband superconductivity.

References:

[1] Ł. Bochenek, et al., Phys. Rev. B 86 (2012) 060511(R).

[2] T. Shibauchi et al., private communication.