Exchange bias in Sc_{0.8}Zr_{0.2}MnO₃ induced by electron doping

Tanushree Sarkar, ¹ Suja Elizabeth, ¹ and P S Anil Kumar ¹

¹Dept. of Physics, Indian Institute of Science, Bangalore-560012

We report exchange bias phenomenon in electron-doped multiferroic compound $Sc_{0.8}Zr_{0.2}MnO_3$. Parent compound $ScMnO_3$ is a frustrated antiferromagnet and due to electron doping, antiferromagnetic ordering $(T_N=90 \text{ K})$ is partially suppressed in $Sc_{0.8}Zr_{0.2}MnO_3$ [1]. Additionally, ferromagnetic interaction $(T_C=60 \text{ K})$ develops in the system and it shows glassy nature below $T_g=17 \text{ K}$. Field-cooled magnetic hysteresis loops exhibit shifts in both field axis and magnetization axis. Exchange bias field (H_E) decays exponentially with rise in temperature. These observations follow conventional exchange bias model of ferromagnetic (FM) clusters embedded in a spin glass (SG) or antiferromagnetic host material [2]. Nevertheless, here we find slight deviations: 1) H_E and remanence asymmetry (M_E) has non-zero value even after crossing T_g and vanishes completely only near T_C . 2) Both H_E and M_E increases sharply with increase in magnitude of cooling field (H_{FC}) up to 3 T beyond which the increment slow down but does not saturate even up to 9 T. Detailed investigation using training effect is carried out in order to elucidate the real nature of observed exchange bias.

References:

- [1] T. Sarkar et al, Journal of Magnetism and Magnetic Materials Under review, (2017)
- [2] S. Karmakar et al, Phys. Rev. B 77, 144409 (2008)