$\begin{array}{c} Magnetocaloric \ and \ magnetotransport \ properties \ of \\ metamagnetic \ Dy_6 Fe_2 Si_3 \ compound \end{array}$

<u>Arun K</u>,¹ Rashid T P,¹ Ivan Curlik,² Sergej Ilkovic,² Marian Reiffers,² and Nagalakshmi ${\rm R}^1$

¹Department of Physics, National Institute of Technology, Tiruchirappalli 620 0015, India ²Faculty of Humanities and Natural Sciences, Presov University, Presov, Slovakia

We investigated the structural, thermodynamic, magnetic, and magnetotransport properties of novel Dy₆Fe₂Si₃ compound. This compound crystallizes in two different phases(Dy₅Si₃ and DyFe₂) having metamagnetic transition below T_c (~49 K) from antiferromagnetic (AFM) to ferromagnetic (FM) around a field of 1 T. The isothermal magnetization curve for T = 2 K reveals the presence of two field induced metamagnetic transitions at $H_{c1} = 0.5$ T and $H_{c2} = 6$ T. A large negative magnetoresistance (MR) of 28 % at 2 K for 9 T is observed and this may be attributed to the Kondo effect. The magnetic entropy change, ΔS_m , computed from the isothermal magnetization data shows a maximum ΔS_m of -7.5 J/kg.K (for a field change, $\Delta H = 20$ kOe) and 2.39 J/kg.K (for $\Delta H = 70$ kOe) at 4 K and 49 K respectively. Large magnetocaloric effects and large MR suggest that this material is interesting for magnetic cooling and sensing applications.