An analytical and combinatoric approach of the XXX Heisenberg model for the two-magnon sector

<u>M. Labuz</u>,¹ T. Lulek,^{1,2} and J. Milewski³

 ¹Faculty of Mathematics and Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszów, Poland
²Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
³Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland

XXX Heisenberg s-1/2 model has been examined in detail during last decades, however, recently one may find some new insights into that issue. Among several approaches describing the eigenproblem for the finite case, a close look into the structure of Bethe equations (BE) for the two-magnon sector case seems to be particularly interesting. Bethe equations enable us to evaluate parameters labeling eigenstates of a magnet, however to find appropriate sets of winding numbers, which parametrize BE, one has to apply the famous TQ equation of Baxter, combined with the Inverse Bethe Ansatz method, or a combinatoric approach, with the use of rigged string configurations. The latter appears to be a tool which ensures the completeness of solutions, and, at the same time, combinatorial numbers enable to indicate precise winding numbers, so that one can obtain all parameters describing eigenfunctions.