Ion driven magnetic and structural modifications of ultrathin Co films with various covers

P. Mazalski,^{1,2} R.P. Socha,¹ L. Ohnoutek,³ L. Beran,³ Z. Kurant,²

A. Wawro,⁴ J. Fassbender,⁵ M. Veis,³ and A. Maziewski²

 ¹ Jerzy Haber Institute of Catalysis and Surface Chemistry of the Polish Academy of Sciences, Cracow, Poland
² Faculty of Physics, University of Bialystok, Bialystok, Poland
³ Faculty of Mathematics and Physics, Charles University in Prague, Prague 2, Czech Republic
⁴ Institute of Physics Polish Academy of Sciences, Warsaw, Poland
⁵ Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

Magnetic and chemical properties of Co ultrathin films covered with Pt or Au cap and buffer layers magnetized in the sample plane were modified by ion irradiation . A strong dependence of the interface type on magnetic properties in irradiated films was observed. Anisotropy modification but no out-of-plane magnetization component were found for Au, contrary to Pt adjacent layers. Magnetic properties were correlated with chemical changes with use of magnetooptical and X-ray photoemission spectroscopies. Experimental observations were supported by calculations (Tridyn package) of layered structure evolution with the ion fluence.

Supported by the NCN FUGA project (DEC-2015/16/S/ST3/00450).