Influence of the existence of nanocrystals to magnetic properties $Hf_2Co_{11}B$ alloys

<u>A. Musiał</u>,^{1, 2} Z. Śniadecki,^{1, 3} J. Marcin,⁴ I. Škorvánek,⁴ J. Kováč,⁴ and B. Idzikowski¹

¹Institute of Molecular Physics, PAS, Poznań, Poland
²NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
³INT, KIT, Eggenstein-Leopoldshafen, Germany
⁴Institute of Experimental Physics, SAS, Košice, Slovakia

The Hf₂Co₁₁B can be an example for rare earth free compound with T_C about 500°C and orthorhombic hard magnetic phase HfCo₇ which is characterize by anisotropy constant K_1 above 10 Mergs/cm³ [1]. Melt-spinning under argon atmosphere was used to produce amorphous Hf-Co-B alloy. X–ray diffraction confirmed fully amorphous or partially crystalline structure of the melt-spun ribbons. Two main irreversible exothermic peaks were observed. Crystallization temperatures T_{x1} and T_{x2} of amorphous Hf₂Co₁₁B measured with heating rate q = 10 K/min are equal 567°C and 633°C, respectively. The coercivity field in partially or fully crystal samples change from 1.2 kOe about 3 kOe and is higher than in amorphous one.

References:

[1] B. Balamurugan, et al. IEEE Trans. Magn. 49 (2013) 3330-3333

Work was supported by the NCRD within the project no. POKL.04.03.00-00-015/12