Structural and magnetic properties of $Y_{1-x}Gd_xCo_2$ (x = 0 - 1) alloys

Z. Śniadecki,^{1, 2} <u>A. Musiał</u>,^{1, 3} A. Łojewski,⁴ M. Jarek,³ R. Puźniak,⁵ A. Wiśniewski,⁵ and B. Idzikowski¹

¹Institute of Molecular Physics, PAS, Poznań, Poland ²INT, KIT, Eggenstein-Leopoldshafen, Germany

³NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland ⁴Poznań University of Technology, Poznań, Poland ⁵Institute of Physics, PAS, Warsaw, Poland

YCo₂ has cubic MgCu₂-type crystalline structure typical for intermetallic Laves phase. The ratio of two rare-earth elements in Y_{1-x}Gd_xCo₂ alloys can change their magnetic properties from Pauli paramagnetic for YCo₂ to the ferrimagnetic GdCo₂ [1]. The fully crystal ribbons was produced by melt-spinning under argon atmosphere. X-ray measurements show that substitution of gadolinium in alloys, determined lattice constant *a* for crystal phase increase from 7.219 to 7.26 Å for YCo₂ and GdCo₂ respectively, which can be result of larger ionic radius for gadolinium atoms. Ac-susceptibility data for Y_{0.5}Gd_{0.5}Co₂ show magnetic ordering below $T_C = 251$ K.

References:

[1] E. Gratz, A.S. Markosyan, J. Phys.: Condens. Matter 13 (2001) R385

Work was supported by the NCRD within the project no. POKL.04.03.00-00-015/12.