Spin reorientation and magnetocaloric properties of $Y_{1-x}Gd_xCo_2$ $(0 \le x \le 1)$ compounds

Z. Śniadecki, ^{1,2} <u>N. Pierunek</u>, ¹ V. Franco, ³ R. Puźniak, ⁴ A. Wiśniewski, ⁴ and B. Idzikowski ¹

¹Institute of Molecular Physics, PAS, Poznań, Poland ²INT, KIT, Eggenstein-Leopoldshafen, Germany ³Departamento de Fisica de la Materia Condensada, US, Sevilla, Spain ⁴Institute of Physics, PAS, Warsaw, Poland

 $Y_{1-x}Gd_xCo_2$ (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys were synthesized in the melt-spinning process. Investigated samples crystallize in the MgCu₂-type Laves phase. Due to the substitution of Y atoms by Gd, increase of the lattice constant from 7.215 Å for YCo₂ to 7.250 Å for GdCo₂ was observed [1]. One can observe noticeable change of $\Delta S_M(T)$ characteristics at low temperatures and in magnetic fields ≤ 3 T. Spin reorientation transition with T_{SR} in the range from 30 to 40 K for samples with x = 0.4 and 0.6 was observed. RC parameter is rather low for all alloys and for instance is equal to 50 and 85 Jkg⁻¹ for Y_{0.6}Gd_{0.4}Co₂ ($T_C = 204$ K) and Y_{0.4}Gd_{0.6}Co₂ ($T_C = 282$ K), respectively. Sample with x = 0.2 is ferromagnetic, while those with higher Gd content are ordered ferrimagnetically below T_C with Co-sublattice oriented antiparallel to Gd one.

References:

[1] T. Nakama, A.T. Burkov, M. Hedo, H. Niki, K. Yagasaki, J. Magn. Mater. 226 (2001) 671