Magnetocaloric properties of amorphous $Gd_{65}Fe_{10}Co_{10}Al_{10}X_55$ (X = Al, Si, B) ribbons

N. Pierunek,¹ Z. Śniadecki,^{1,2} J. Marcin,³ I. Škorvánek,³ and B. Idzikowski¹

¹Institute of Molecular Physics, PAS, Poznań, Poland

 2 INT, KIT, Eggenstein-Leopoldshafen, Germany

³Institute of Experimental Physics, SAS, Košice, Slovakia

Magnetocaloric effect (MCE) is described as the adiabatic temperature change ΔT_{ad} or the isothermal magnetic entropy change ΔS_M , which is a function of the temperature and magnetic field. Here, we focused our attention on MCE in $Gd_{65}Fe_{10}Co_{10}Al_{10}X_5$ (X = Al, Si, B) alloys. The synthesized melt-spun materials have an amorphous structure confirmed by XRD. The T_C , determined from M(T) curves by the inflection method is equal to 145, 160 and 175 K for the alloys with 5 at.% of B, Al and Si, respectively. Maximum value of the magnetic entropy changes for the magnetic fields from 0 to 5 T is 7.1 Jkg⁻¹K⁻¹ for X = B, whereas related refrigeration capacity is 748 Jkg⁻¹. The maximum magnetic entropy changes for Gd₆₅Fe₁₀Co₁₀Al₁₅ and Gd₆₅Fe₁₀Co₁₀Al₁₀Si₅ amount 6.0 Jkg⁻¹K⁻¹ and 5.9 Jkg⁻¹K⁻¹, while *RC* parameter is equal 700 and 698 Jkg⁻¹, respectively.

References:

 C. Mayer, S. Gorsse, G. Ballon, R. Cabalerro-Flores, V. Franco, B. Chevalier, J. Appl. Phys 110 (2011) 053920