Mössbauer spectroscopy investigation of YFe_xCo_{2-x} (x = 0.03 and 1) compounds

Z. Śniadecki,^{1, 2} <u>M. Kopcewicz</u>,³ N. Pierunek,¹ R. Puźniak,⁴ A. Wiśniewski,⁴ and B. Idzikowski¹

¹Institute of Molecular Physics, PAS, Poznań, Poland
²INT, KIT, Eggenstein-Leopoldshafen, Germany
³Institute of Electronic Materials Technology, Warszawa, Poland
⁴Institute of Physics, PAS, Warszawa, Poland

 YCo_2 compound is an exchange-enhanced Pauli paramagnet on the verge of being magnetic. Ferromagnetic long-range ordering can be induced by topological or chemical disorder [1]. The influence of Fe substitution and quenched-in topological disorder on the magnetic properties of $YFe_{0.03}Co_{1.97}$ and YFeCo is studied by means of x-ray diffraction, vibrating sample magnetometry, Mössbauer spectroscopy and AC magnetic susceptibility measurements. All samples crystallize in cubic MgCu₂-type phase with lattice constant changing from 7.223 Å for YCo₂ to 7.313 Å for YFeCo. Fe atoms are responsible for stabilization of magnetic moments on Co and mictomagnetism is observed in $YFe_{0.03}Co_{1.97}$ sample. The Mössbauer spectra permitted distinction between two magnetically inequivalent Fe sites, as reported earlier for YFe_2 [2].

References:

[1] Z. Śniadecki et al., J. Appl. Phys. 115 (2014) 17E129

[2] Y. Nishihara et al., J. Phys. Soc. Jpn. 51 (1982) 2487-2492