Structure and magnetic properties of amorphous $Fe_{74}Hf_4Ta_1Cu_1Gd_1La_xSi_{15-x}B_4$ (x = 0, 7) ribbons

<u>P.J. Bardziński</u>,¹ M. Kopcewicz,² M. Rybaczuk,¹ M. Hasiak,¹ A. Musiał,³ V. Kinzhybalo,⁴ and B. Idzikowski³

¹Wrocław University of Technology, Wrocław, Poland

²Institute of Electronic Materials Technology, Warsaw, Poland

³Institute of Molecular Physics PAS, Poznań, Poland

⁴Institute of Low Temperature and Structure Research PAS, Wrocław, Poland

The multicomponent $Fe_{74}Hf_4Ta_1Cu_1Gd_1La_xSi_{15-x}B_4$ (x = 0, 7) alloys are promising candidates in the search for materials with unusual mechanical and magnetic properties. Amorphous nature of melt-spun samples was confirmed by XRD diffractometry and Mössbauer spectroscopy. The XRD patterns revealed a distinct amorphous halo. The low-field components of magnetic hyperfine field distributions on iron nuclei are observed in the Mössbauer spectra, with average hyperfine field values of 19.9 and 15.7 T for x = 0 and x = 7, respectively. Coercivity studied by vibrating sample magnetometer was 518 A/m for x = 0 and 135 A/m for x = 7 at 300 K and 596 A/m for x = 0 and 1197 A/m for x = 7 at 400 K. Remanence also changed with temperature, amounting to 0.70 T for x = 0 and 0.45 T for x = 7 at 300 K, while at 400 K it was 0.57 and 0.21 T for x = 0 and x = 7, respectively. It is shown that La addition has beneficial effect of shifting the Curie point towards lower temperatures together with the increase of magnitude of magnetization.