Magnetic properties of the molecular-based magnet $Na[FeO_6(C_{10}H_6N)_3]$

E. Aksimentyeva, ¹ E. Zubov, ² K. Dyakonov, ³ and V. Dyakonov^{2, 4}

¹Lviv Ivan Franko National University, Lviv, Ukraine

²A.A. Galkin Donetsk Physico-Technical Institute, Donetsk, Ukraine

³Ioffe Physico-Technical Institute, St. Petersburg, Russia

⁴Institute of Physics of PAS. Warszawa. Poland

The static and dynamic aspects of magnetic behaviour of the complex $Na[FeO_6(C_{10}H_6N)_3]$ as a function of temperature, frequency and magnetic field have been analyzed. The ac susceptibility and dc magnetization were measured at temperatures of 1.5-200 K in magnetic field up to 90 kOe and at frequencies of 95-2000 Hz. The experimental data indicate an absence of magnetic long range order in this complex. The magnetization does not reach a saturation in field of 90 kOe at 1.5 K. At low temperatures the following peculiarities of magnetic properties of complex were found: cusp-like anomalies in the ac susceptibility and ZFC magnetization at $T_{cusp} = 17$ K; frequency dependence of the T_{cusp} temperature; remanence and time-dependent relaxation of ZFC magnetization. Comparison of characteristic peculiarities of magnetic behavior of the spin-glasses and superparamagnets was performed. Although superparamagnetic behavior should not be completely ruled out, the analysis of results strongly suggests that the spin-glass-like behavior is a more consistent explanation.