Quasi-One-Dimensional Ferromagnet $CuAs_2O_4$

K. Caslin,^{1,2} R.K. Kremer,¹ F.S. Razavi,² A. Schulz,¹ A. Munoz,³

F. Pertlik,⁴ J. Liu,⁵ M.H. Whangbo,⁵ and J.M. Law⁶

¹Max-Planck-Institute for Solid State Research ²Brock University ³Universidad de La Laguna ⁴Vienna University of Technology, Institute of Mineralogy and Crystallography ⁵North Carolina State University ⁶Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum

Many $\operatorname{Cu}^{2+}(S=1/2)$ linear-spin-chains systems exhibit interesting low-dimensional magnetism. Most often, these spin-chains support FM nearest-neighbor (NN) and AFM next-nearest-neighbor (NNN) interactions. Systems of this type are known to develop AFM incommensurate spin-spiral structures and sometimes multiferroic behavior. There exists a magnetic phase diagram which can predict the intra-chain behaviour of spin-chain compounds using the ratio of the NN over the NNN spin exchange constants, $\alpha=\operatorname{Jnn}/\operatorname{Jnnn}$, with a quantum critical point exists on the boundary at $\alpha=-4$. We report on CuAs₂O₄, mineral name Trippkeite, featuring CuO₂ ribbon chains. Trippkeite is an unusual spin-chain system because it shows long-range FM ordering and has an α ratio close to -4.