Coexistence of superconductivity and ferromagnetism in the *d*-band metal Y_9Co_7

 $\underline{\mathrm{L. Bochenek}},^1$ K. Rogacki,^1 A. Kołodziejczyk,^2 and T. Cichorek^1

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland ²Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland

Transport and thermodynamic properties of the binary intermetallic compound Y_9Co_7 [1] have been re-investigated through precision low-temperature measurements performed on a high quality polycrystalline sample. Our results provide solid evidence for a coexistence of itinerant ferromagnetism and superconductivity in Y_9Co_7 below $T_{\rm sc} = 2.9$ K, as opposite to previous beliefs that superconductivity occurs in the paramagnetic phase embedded in a basically normal magnetic environment. Additionally, we demonstrate that the clean-limit condition is satisfied for a pure sample of this sole *d*-band ferromagnetic superconductor. Thus, the question whether magnetic fluctuations contribute in a formation of Cooper pairs in Y_9Co_7 remains open.

References:

[1] A. Kołodziejczyk et al., J. Phys. F: Met. Phys. 10, L333 (1980).