Low-lying thermal excitations on the border of ferromagnetism in the filled skutterudite NdOs₄As₁₂

A. Rudenko, A. Szewczyk, Z. Henkie, and T. Cichorek

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland ²Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Single crystals of the filled-skutterudite compound NdOs₄As₁₂ were grown by mineralization in a molten Cd:As flux. Features related to a ferromagnetic transition at $\simeq 1.1\,\mathrm{K}$ are observed in both transport and thermodynamic properties. Magnetic entropy considerations combined with magnetization data point at a quartet ground state of the Nd³⁺ multiplet being well separated from a first excited state. Unexpectedly, a Schottky anomaly with the maximum at $\simeq 0.93\,\mathrm{K}$ emerges on the border of the ferromagnetically ordered state. Additionally, a small magnetic field of 0.1 T shifts the Schottky peak above the Curie temperature. Thus, its origin cannot be related to the molecular-field splitting, as frequently observed for other ferromagnets. We attribute the Schottky anomaly with an energy separation $\Delta/k_{\rm B}\approx 2.2\,\mathrm{K}$ to a lowering of the T_h cubic point symmetry of the Nd³⁺ ions due to an unusual distortion of the Os cage, as recently proposed for PrOs₄Sb₁₂ and NdOs₄Sb₁₂ [1].

References:

[1] T. Keiber et al., Phys. Rev. B 86, 174106 (2012).