Crystal structure and magnetic microstructure of $Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO_3$

I.I. Nigmatullina,¹ V.V. Parfenov,¹ A.V. Pyataev,¹ and R.M. Eremina²

¹Kazan (Volga region) Federal University ²Kazan Physical-Technical Institute

The structural and magnetic properties of YbMnO₃, Yb_{0.82}Sr_{0.18}MnO₃ and solid solutions Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃ (x = 0.1-0.2) are investigated by X-ray analysis, magnetic resonance, Mössbauer spectroscopy. Samples were prepared using standard ceramic processing. XRA of ferromanganites showed that all samples have the ilmenite (FeTiO₃) lattice. The lattice parameters are in good agreement with literature data. The Mössbauer spectra of ytterbium ferromanganites at room temperature have not magnetic hyperfine structure. Spectra are well described by a superposition of two quadrupole doublets with different quadrupole splitting relevant distorted octahedral and hexahedral environment of the Fe3+ cation [2]. Magnetic phase separation in the Mössbauer spectra observed at 80 K, when the spectrum is a superposition of doublet and sextet. Measurements of EPR spectra Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃ were carried out in X-band at temperatures from 100 to 320K. At low temperatures Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃ spectra consist of two lines with different temperature behavior, i.e. there is a magnetic two-phase state. When the temperature rises, the second line disappears and samples Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃ become a paramagnetic.