Voltage control of ferromagnetic resonance in permalloy stripes on piezoelectric substrates

S. Ziętek,¹ W. Skowroński,¹ J. Kanak,¹ W. Powroźnik,¹ M. Czapkiewicz,¹
M. Frankowski,¹ A. Żywczak,² D. Lopez Gonzalez,³ S. van Dijken,³
H. Głowiński,⁴ J. Dubowik,⁴ F. Stobiecki,⁴ and T. Stobiecki¹

 ¹AGH University of Science and Technology, Department of Electronics
²AGH University of Science and Technology, Academic Centre of Materials and Nanotechnology
³NanoSpin, Department of Applied Physics, Aalto University
⁴Institute of Molecular Physics, Polish Academy of Sciences

Voltage tuning of ferromagnetic resonance (FMR) is of interest for applications in voltage-tunable microwave devices. In this study, we report on the resonant excitation of spin waves by a radio frequency current in a 20 nm thick stripe $(40x200\mu m^2)$ of Ni₈₀Fe₂₀ on a piezoelectric PMN-PT substrate. The FMR signal results from the spin-torque diode effect being a product of spin-transfer torque and anisotropy magnetoresistance. The application of electric field to the PMN-PT substrate shifts FMR frequency due to changes of magnetoelastic anisotropy in the permalloy film.

Supported by Polish National Science Center grant HARMONIA No.2012/04/M/ST7/00799 and AGH Dean's grant.