The spin-1 two-dimensional J_1 - J_3 Heisenberg model on a triangular lattice

<u>P. Rubin</u>,¹ A. Sherman,¹ and M. Schreiber²

¹University of Tartu, Tartu, Estonia ²Technische Universität, Chemnitz, Germany

Motivated by the experimental data for NiGa₂S₄, the spin-1 Heisenberg model on a triangular lattice with the ferromagnetic nearest- and antiferromagnetic third-nearest-neighbor exchange interactions, $J_1 = -(1 - p)J$ and $J_3 = pJ, J > 0$, is studied in the range of the parameter $0 \le p \le 1$. Mori's projection operator technique is used as a method which retains the rotation symmetry of spin components and does not anticipate any magnetic ordering. For zero temperature several phase transitions are observed. At $p \approx 0.2$ the ground state is transformed from the ferromagnetic spin structure into a disordered state, which in its turn is changed to an antiferromagnetic long-range ordered state with the incommensurate ordering vector $Q \approx (1.16, 0)$ at $p \approx 0.31$. With growing p the ordering vector moves along the line Q-Q₁ to the commensurate point $Q_1 = (2\pi/3, 0)$ which is reached at p = 1. The final state with an antiferromagnetic long-range order can be conceived as four interpenetrating sublattices with the 120° spin structure on each of them. We compare these results with the exact-diagonalization data obtained by the SPINPACK code.