Magnetic structure of artificial spin ice

<u>M. Matczak</u>,^{1,2} F. Lisiecki,³ P. Kuświk,¹ D. Wilgocka-Ślęzak,⁴ M. Ślęzak,^{5,6} T. Giela,⁴ J. Raabe,⁶ N. Pilet,⁶ P. Mazalski,⁷ J. Korecki,^{4,5} A. Maziewski,⁷ J. Dubowik,¹ and F. Stobiecki^{1,2}

¹Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
²NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
³Faculty of Technical Physics, Poznań University of Technology, Poznań, Poland
⁴Jerzy Haber Institute of Catalysis and Surface Science, Polish Academy of Sciences, Kraków, Poland
⁵Faculty of Physics and Applied Computer Science, AGH University of Technology, Kraków, Poland
⁶Swiss Light Source, Paul Scherrer Institut, Switzerland
⁷Faculty of Physics, University of Białystok, Poland

Arrays of dipolar coupled ferromagnetic nanostructres (artificial kagome spin ice) were produced using lift-off electron beam lithography and ultrahigh vacuum magnetron sputtering of permalloy (Ni₈₀Fe₂₀) films. The topologies of the structures were examined by: scanning electron microscopy, photoelectron microscopy (PEEM), and atomic force microscopy. Magnetic structures were observed with PEEM employing the XMCD effect and with magnetic force microscopy. The specific features of magnetic structure characteristic for artificial spin ice were recorded with both methods.