$\begin{array}{c} {\bf Magnetocaloric\ effect\ of\ Gd_5Si_4-influence\ of\ mechanical}\\ {\bf milling} \end{array}$

<u>T. Toliński</u>,¹ K. Synoradzki,¹ and P. Nowotny²

¹Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland ²Institute of Physics, Poznań University of Technology, Poznań, Poland

The magnetic susceptibility, magnetization curves, heat capacity, and magnetocaloric effect (MCE) measurements are reported both for the bulk and mechanically milled Gd_5Si_4 compound. X-ray diffraction studies show that already the milling time of 10 hours is enough to destroy the crystallographic order. Simultaneously, the magnetic phase transition at 340 K is strongly suppressed implying a breaking of the long-range magnetic order. For the bulk sample the maximum isothermal magnetic entropy change is equal to 6.1 J.kg⁻¹K⁻¹ at the magnetic field change of 9 T, whereas it is negligible after the milling. The temperature dependence of the specific heat confirms the presence of the transition at $T_C = 340$ K for the bulk sample.