Determination of exchange and rotational anisotropies in $\text{Co}_2\text{FeSi}/\text{IrMn}$ exchange coupled structures using broadband ferromagnetic resonance

H. Głowiński, ¹ I. Gościańska, ² A. Krysztofik, ² and J. Dubowik ¹

¹Institute of Molecular Physics, PASci, M. Smoluchowskiego 17, 60-179 Poznań, Poland ²Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland

In ferromagnetic (FM)/antiferromagnetic (AFM) bilayer systems the exchange bias (EB) is the most spectacular phenomenon resulting in a shift of a hysteresis of the exchange anisotropy field H_{EB} . However, another phenomenon related to EB—rotational anisotropy—has been far less recognized. The rotatable anisotropy field H_{RA} is a field that follows the macroscopic motion of the magnetization, decreasing the resonance field in all directions. In this contribution, we present broadband VNA-FMR measurements of both H_{EB} and H_{RA} in [Co₂FeSi/IrMn]₃ structures comprising three bilayers with distinct H_{EB} of $\sim 20-70-220$ Oe, respectively. The aim of the study is to find correlation between H_{EB} and H_{RA} . It appears that H_{RA} scales $\propto H_{EB}$, contrary to our expectations.