Ethylene groups ordering transition in the $\beta''\text{-}(BEDT\text{-}TTF)_4[(H_3O)Fe(C_2O_4)_3]\cdot Y \text{ magnetic molecular} \\ \text{conductors}$

<u>I. Olejniczak</u>, A. Frąckowiak, R. Świetlik, T.G. Prokhorova, and E.B. Yagubskii²

¹Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland ²Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, MD, 142432, Russia

Superconductivity in two-dimensional radical cation salts and its interplay with electron-electron correlations are continuing to attract considerable attention. The polarized infrared reflectance and Raman spectra of quasi-two-dimensional β'' -(BEDT-TTF)₄[(H₃O)Fe(C₂O₄)₃]·Y charge-transfer salts where Y=C₆H₅Br, (C₆H₅CN)_{0.17}(C₆H₅Br)_{0.83}, (C₆H₅CN)_{0.4}(C₆H₅F)_{0.6}, have been measured as a function of temperature. Signatures of charge inhomogenity have been found in both Raman and infrared spectra. The 100 K transition to a mixed insulating/metallic state is clearly seen in the temperature dependence of the electronic spectra of superconducting β'' -(BEDT-TTF)₄[(H₃O)Fe(C₂O₄)₃]·C₆H₅Br. We suggest that the phase transition is due to subtle change in ethylene groups ordering related with the structural phase transition in the anionic layer.