Magnetic resonance in Sr-doped $Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO_3$

I.I. Nig'matullina, V.V. Parfenov, R.M. Eremina, and I.V. Yatsyk, and I.V. Yatsyk,

Electron spin resonance (ESR) measurements were performed in YbMnO₃, Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃ (x=0; 0,1-0,2) in a wide temperature range from 100 to 300 K. The ESR spectrum in ceramics YbMnO₃ consists of one exchange-narrowed line with the g-factor about 2.11 and the linewidth about 800 Oe in the entire temperature range. This value of the linewidth in ceramics YbMnO₃ is about 2.3 times less than in LaMnO₃. Probably, this experimental fact is related with a change in the symmetry of the crystal structure from hexagonal P6₃cm (YbMnO₃) to orthorhombic Pbnm (LaMnO₃) and thus with the change of the crystal field parameters.

ESR spectrum of Sr-doped Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃ consists of two lines in the temperature range from 100 to 260 K due to the phase separation in the sample. At the temperature above 260 K phase transition was observed into single-phase state in ceramics Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃. In spectrum we observed only one line. The antiferromagnetic ordering is observed in the Fe-doped samples Yb_{0.82}Sr_{0.18}Mn_{1-x}Fe_xO₃ (x=0,1-0,2) at the temperature below 130 K, thus the spectrum of magnetic resonance are not observed. The reported study was partially supported by RFBR, research project No. 13-02-97120.

¹Kazan (Volga Region) Federal University, Kazan, Russia

 $^{^2}Zavoisky\ Physical\ -Technical\ Institute\ RAS,\ Kazan,\ Russia$