Evolution of a non-Fermi-liquid state in the pseudo-ternary solid solutions $URu_{1-x}Pd_xGe$

<u>V.H. Tran¹</u> and D. Gralak¹

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland

X - ray diffraction, dc-magnetization M, magnetic susceptibility $\chi(T)$, specific heat $C_p(T)$, and electrical resistivity $\rho(T)$ were performed on $\mathrm{URu}_{1-x}\mathrm{Pd}_x\mathrm{Ge}$. The investigated solid solutions crystallize in the orthorhombic TiNiSi - type structure (space group Pnma). We found that the alloys with $x \leq 0.32$ are nonmagnetic down to 2 K, whereas these with $0.35 \leq x \leq 0.8$ are antiferromagnetic. The Néel temperature of the latter pseudo-ternaries attains its maximum value of 32 K at x = 0.8. The composition x = 0.9 manifests two magnetic phase transitions: antiferromagnetic at $T_N = 20$ K and ferromagnetic at $T_C = 30$ K. Remarkably, the compositions located closer to the nonmagnetic-magnetic border ($x \sim 0.3$), exhibit $\chi(T) \propto T^{0.53}$, $C_p(T) \propto \ln T$ and $\rho(T) \propto T^{1.2}$, respectively. The finding has been interpreted in terms of non-Fermi liquid properties nearby a quantum critical point. The development of magnetism in URu_{1-x}Pd_xGe corresponds well to changes in the degree of 5f electron localization.

The work was supported by the National Science Centre (Poland) under the Grant No. 2011/01/B/ST3/04553.