Really first principles calculations for CoF₃ <u>R.J. Radwanski</u>,^{1,2} D.M. Nalecz,^{1,2} M. Krupska,^{1,2} T. Piwowarczyk,^{1,2} and Z. Ropka¹

¹Center of Solid State Physics, S^{nt}Filip 5,31-150 Krakow, Poland ²Institute of Physics, Pedagogical University, 30-084 Krakow, Poland

We have performed calculations of the low-energy electronic structure of CoF₃ from first principles, assuming the atomistic construction of matter and the electrostatic origin of the crystal-field splitting. CoF₃ is one of compounds with the trivalent Co ions but in contrary to nonmagnetic LaCoO₃ (Phys. Rev. B **67** (2003) 172401) exhibits antiferromagnetism below $T_N = 460$ K. In our atomic-like approach QUASST the *d* electrons of the Co³⁺ ion in CoF₃ form the highly-correlated atomic-like system $3d^6$ in the high-spin state resulting from the octahedral subterm ${}^5T_{2g}$ (5D term) ground state. We have derived the low-energy electronic structure taking into account the trigonal distortion and the relativistic spin-orbit interaction. With the discrete electronic structure for 3*d* electron we have described the magnetic properties (the value of the magnetic moment and its direction) and temperature dependence of the specific heat together with the λ -type peak at T_N . We evaluated the orbital moment and the strength of spin interactions responsible for the formation of the magnetic state.