Fabrication, structure and magnetic properties of Co/Pd and Fe/Pd multilayered nanorods and antidots arrays on anodic aluminium oxide templates

<u>A.Maximenko</u>,^{1, 2} A. Zarzycki,¹ Y. Zabila,¹ M. Perzanowski,¹ M. Krupiński,¹ M. Kąc,¹ M. Marszałek,¹ and J. Fedotova²

> ¹ The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
> ²National Centre for Particle and High Energy Physics of BSU, 220030 Minsk, Republic of Belarus

A fabrication method of multilayered (ML) Co/Pd and Fe/Pd magnetic nanorods and antidots arrays with carefully engineered pinning on the top of nanoporous anodized aluminum oxide (AAO) templates (pore diameters 30, 40 and 180 *nm*) is presented. The surface morphology and crystallographic structure of the systems were investigated by SEM and X-ray diffractometry, respectively. TEM cross-sectional confirmed ML structure of nanosized arrays. SQUID-magnetometry indicates enhanced perpendicular anisotropy and more than twofold increase of coercivity of nano-sized arrays in comparising to flat films. Magnetization reversal mechanisms in the systems were investigated by analysing the angular dependence of the remanent coercivity. Presented method of magnetic nano-arrays fabrication can be used as low-cost nanopatterning technique.