Magnetooptical analysis of ultrathin Co films modified by femtosecond laser pulses

W. Dobrogowski,¹ J. Kisielewski,¹ Z. Kurant,¹ K. Kościuk,¹ I. Sveklo,¹ K. Postava,² L. T. Baczewski,³ A. Wawro,³ and A. Maziewski¹

> ¹Faculty of Physics, University of Białystok, Poland ²VŠB - Technical University of Ostrava, Czech Republic ³Institute of Physics, Polish Academy of Sciences, Poland

Polar Kerr effect microscope-based setup with a CCD camera and a specially constructed electromagnet, supported by software for both data acquisition and image processing, was developed to investigate local magnetic and magnetooptical properties of ultrathin metallic systems with a micrometer resolution. Ultrathin cobalt films with femtosecond laser pulses-induced out-of-plane magnetization states [1] were studied using this method. The laser-annealed regions were characterized in detail by giving the two-dimensional maps of remanence, coercivity, saturation field, and maximal Kerr rotation, as well as some statistical information concerning distributions of these quantities.

References:

[1] J. Kisielewski et al., J. Appl. Phys. ${\bf 115},\, 053906$ (2014)

FNP Team Programme, European Regional Development Fund, OPIE 2007-2013; National Science Centre Poland (DEC-2012106/M/ST3/00475)