Role of Fe-ions in the formation of magnetic and thermomagnetic properties of quasi-binary $Ho(Co_{1-x}Fe_x)_2$ compounds

M.S. Anikin,¹ E.N. Tarasov,¹ V.H. Osadchenko,¹ and A.V. Zinin¹

¹Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira str. 19, 620002 Ekaterinburg, Russia

Structure, magnetic and thermomagnetic properties of the Ho(Co_{1-x}Fe_x)₂ alloy (x = 0.09, 0.12, 0.13) as a perspective material for thermomagnetic machine have been investigated. Magnetic properties were measured by SQUID-magnetometer under the field up to 7 T at temperature varied from 4.2 to 350 K. Curie temperature (T_c) is equal to 199, 258, and 271 K, respectively. Temperature dependencies of the magnetic entropy change $\Delta S(T)$, which were calculated from magnetization isotherms, demonstrated broadening of the maximum at temperatures below Tc both under increasing magnetic field and under increasing of iron concentration. For Ho(Co_{0.88}Fe_{0.12})₂ compound the RCP [1] value measured at 5 T exceed the RCP value observed for Tb(Co_{0.7}Fe_{0.3})₂ [1] (490 J/kg vs. 299 J/kg, respectively). According to our results, Ho(Co_{1-x}Fe_x)₂ alloys exhibit large magnetocaloric effect and can be considered as a promising material for both applied and basic prospective research.

References:

[1] Madhumita Halder, S. M. Yusuf, M. D. Mukadam, et al., Phys. Rev. B 81 (2010) 174402