Multiferroic $Sr_{1-x}Ba_xMnO_3$ Perovskite with a Huge Magnetoelectric Coupling

<u>B. Dabrowski</u>,¹ J. Mais,¹ O. Chmaissem,¹ S. Kolesnik,¹ E. Markiewicz,² V. Goian,³ S. Kamba,³ D.K. Pratt,⁴ and J. Lynn⁴

¹Deptment of Physics, Northern Illinois University, DeKalb, IL, USA

²Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland

³Institute of Physics, Academy of Sciences of the Czech Republic

⁴NIST Center for Neutron Research, Gaithersburg, MD, USA

We have prepared unique multiferroic $\mathrm{Sr}_{1-x}^{2+}\mathrm{Ba}_x^{2+}\mathrm{Mn}^{4+}\mathrm{O}_3$ perovskite ceramics $(x = 0.4 \cdot 0.45)$ for which ferroelectricity (FE, $T_{\mathrm{F}} \sim 400$ K) and antiferromagnetism (AF, $T_{\mathrm{N}} \sim 200$ K) originate exclusively from the Mn cations. Similar to $\mathrm{Ba}^{2+}\mathrm{Ti}^{4+}\mathrm{O}_3$, the classical displacive-type ferroelectric phase transition occurs for x > 0.4 when the Mn ions move out of the center of the MnO₆ octahedra. These materials show on cooling a sequence of transitions from the paramagnetic (PM)/paraelectric (PE) cubic phase to the PM/FE tetragonal P4mm phase and finally to AF/PE P4/mmm phase. The largest known magneto-electric coupling was observed near T_{N} when ferroelectric permittivity are reliable only below 40 K, where intrinsic permittivity is about 340 and does not change with magnetic field up to 9 T. We found the AF order parameter energy gap of 4.6(5) meV and the top of the magnon band at 43(1) meV.