Anomalus magnetic, thermodynamic and transport properties of the ruthenium perovskites $Ca_{1-x}Sr_xRuO_3$ in the region of high calcium concentration

A. Zarzycki,¹ M. Rams,² E.A. Görlich,² and K. Tomala²

¹H. Niewodniczański Institute of Nuclear Physics, PAS, Kraków

²M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków

SrRuO₃ is a metallic ferromagnet with $T_{\rm C} \simeq 163$ K. In the Ca_{1-x}Sr_xRuO₃ system, dilution of the strontium sublattice by calcium atoms leads to decrease of the Curie temperature. The ferromagnetic order disappears at a critical concentration of strontium $x_{\rm cr} \approx 0.27$, at the quantum phase transition between the itinerant ferromagnet and a metallic paramagnet. All materials with $x < x_{\rm cr}$ are paramagnetic. Investigations of the magnetic, thermodynamic and transport properties of the materials with the strontium concentration varying from x = 0.4 (ferromagnet with

terials with the strontium concentration varying from x = 0.4 (ferromagnet with $T_C \simeq 20$ K) to x = 0 are reported. The ferromagnetic $Ca_{0.6}Sr_{0.4}RuO_3$ shows typical Landau Fermi-liquid behaviour with C/T = const and $\rho \sim T^2$. For materials with $x < x_{cr}$ the magnetic susceptibility in the range of temperatures between about 10 K and 100 K behaves as $\chi \sim T^{1-\lambda}$. The heat capacity and the electrical resistivity demonstrate transitions from the Fermi-liquid at very low temperatures to the anomalous behaviour with $C/T \sim \log T$ and $\rho \sim T^{3/2}$ at higher temperatures. The Fermi-liquid behaviour is restored in the external magnetic field.