Magnetic, thermal and transport properties of $Y_{2-x}Bi_xRu_2O_7$ in the matallic phase

A. Zarzycki,¹ M. Rams,² E.A. Görlich,² and <u>K. Tomala²</u>

¹H. Niewodniczański Institute of Nuclear Physics, PAS, Kraków ²M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków

Ruthenium oxide Y₂Ru₂O₇ is an antiferromagnetically ordered Mott insulator with the Néel temperature of $T_{\rm N} \simeq 76$ K. Dilution of the yttrium sublattice with tetravalent bismuth ions leads to the metal-insulator transition at around the critical bismuth concentration $x_{\rm cr} \approx 0.53$. Nevertheless, some traces of the insulating phase survive at low temperatures even for systems with x > 1.

Two samples with bismuth concentrations of x = 1.2 and 1.5 were investigated above 0.4 K. Temperature dependence of the magnetic susceptibility below $T \approx 100$ K can be described by the power law $\chi \sim T^{-\lambda}$ with $\lambda = 0.50(2)$. Heat capacity can be analysed taking into account the electronic contribution in which, apart from the usual Fermi-liquid term C/T = const, a spin fluctuations contribution of the form $-T^3 \log(T/T_0)$ is taken into account. The electrical resistivity shows the Fermi-liquid dependence $\rho \sim T^2$ at low temperatures which changes to the anomalous behaviour $\rho \sim T^{3/2}$ above about 3 K. Application of the external magnetic field broadens the Fermi-liquid region.