Structure-property relation in granular L1₀-FePt media

S. Wicht,^{1,2} V. Neu,¹ L. Schultz,^{1,2} O. Mosendz,³ V. Mehta,³ S. Jain,³ O. Hellwig,³ D. Weller,³ and B. Rellinghaus³

¹IFW Dresden, P.O. Box 260116, D-01171 Dresden, Germany

²University of Technology, D-01062 Dresden, Germany ³HGST. 3403 Yerba Buena Rd, San Jose, CA-95135, USA

Based on their high uniaxial magneto-crystalline anisotropy of $K_U = 6.6 \text{ MJ/m}^3$ granular L1₀-ordered FePt-C films are seen as promising material candidates for future hard disk media. Aberration-corrected high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometry (VSM) are used to correlate the structural and magnetic properties of these films. HRTEM images in plan view geometry reveal a bimodal distribution of the particle size ($\bar{D} = 5.9 \text{ nm}$) while cross-sectional images are used to determine the orientation of the particles' easy axes and of the underlying MgO seed crystal relative to the substrate normal. The texture spread of the [001] easy axes is roughly 3° and thus larger than the misalingment of the MgO crystals which can be ascribed to the nucleation of FePt growth at MgO step edges [1]. The magnetic analyses exhibit a high anisotropy field of $\mu_0 H_A = 9.2 \text{ T}$ and a weak dipolar coupling between the matrix-separated nanomagnets.

References:

[1] S. Wicht et al., J. Appl. Phys. 114, 063906 (2013)