$RBaCo_2O_{5.5}$ (R = Y, Gd, and Tb) – thermal properties and phase transition

J. Wieckowski,¹ M. U. Gutowska,¹ A. Szewczyk,¹ K. Conder,²

E. Pomjakushina,² V. P. Gnezdilov,³ and S. L. Gnatchenko³

¹Institute of Physics, Polish Academy of Sciences, Warsaw, Poland ²Paul Scherrer Institute, Villigen, Switzerland

³B. Verkin Institute for Low Temperature Physics and Engineering, Kharkiv, Ukraine

Layered cobaltites $RBaCo_2O_{5.5}$, show numerous intriguing properties, e.g., large O_2 ionic conductivity, appearance of Co ions in different spin states, and several phase transitions of different nature. Comparative specific heat studies, aimed at explaining an influence of different rare-earth ions on thermal properties of these compounds and on the phase transitions appearing in them, were performed for the compositions with R being: Y (nonmagnetic), Gd (magnetic but not influenced by crystalline field, CEF), and Tb (magnetic and strongly influenced by CEF). The studies were performed over the temperature range 3 - 395 K, in the magnetic field up to 9 T. Lattice, magnon, and Schottky contributions to the specific heat were separated and described theoretically. The molecular field corresponding to the R-Co exchange interactions was estimated to be ~ 1 T.

The work was partly supported by the European Regional Development Fund, through the Innovative Economy Grant POIG.01.01.02-00-108/09.