Local magnetic properties of $Mn_5Ge_3C_x$: ⁵⁵Mn NMR study

R. Kalvig,¹ E. Jędryka,¹ M. Wójcik,¹ and L. Michez²

 ¹Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
²CINaM - CNRS UPR 3118, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, France

Hexagonal Mn_5Ge_3 compound, with Mn in two nonequivalent positions: 4d (Mn_I) and 6g (Mn_{II}) , is a prospective spintronic material due to high spin polarization and high Curie temperature (up to 450 K in case of samples doped with carbon). To investigate the magnetic properties of this system, an extensive ⁵⁵Mn NMR study was carried out on a series of epitaxial films of $Mn_5Ge_3C_x$ for 0 < x < 0.85. The NMR spectrum recorded from the pristine Mn_5Ge_3 thin film reveals NMR lines at 210 MHz and 430 MHz, readily attributed to Mn_I and Mn_{II} sites, respectively. Upon the inclusion of carbon, Mn_{II} sites are first to be affected, with a new NMR line quickly developing around 355 MHz, indicating a number of Mn_{II} atoms with altered magnetic moments. This new value of Mn magnetic moment results from the strong bonding the carbon atoms make with Mn_{II} as the nearest neighbors. The effect of carbon is much smaller on Mn_I sites where it plays the role of a more distant neighbor, and is visible only after reaching a much higher C concentration, close to x=0.5.