Spectroscopic studies of the phase transition from the Mott insulator state to the charge ordering state of κ -(ET)₄[M(CN)₆][N(C₂H₅)₄]·2H₂O (M = Co^{III} and Fe^{III}) salts

A. Łapiński,¹ R. Świetlik,¹ L. Ouahab,² and S. Golhen²

¹Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

²Organométalliques: Matériaux et Catalyse UMR 6226 CNRS-UR1 Institut des Sciences Chimiques de Rennes, Université de Rennes 1, 35042, Rennes Cedex, France

We report detailed IR investigations of the charge ordering (CO) transition at T=150 K and charge fluctuations in κ -(ET)₄[M(CN)₆][N(C₂H₅)₄]·2H₂O (M = Co^{III} and Fe^{III}). As a consequence of the CO, electronic and vibrational spectra are modified. The most important proof of the CO is the appearance of the electronic band at 7000 cm⁻¹ attributed to charge transfer in (ET)₂²⁺ dimers and also the vibrational band at 1347 cm⁻¹ being the result of coupling of C=C mode of ET with this electronic excitation. Apart from the long-range Coulomb interactions between electrons also the anions can have a significant influence on the formation of the CO state.

This work was supported by the National Science Centre (Decision No. DEC-2012/04/M/ST3/00774).