Thermal properties of antiferromagnetic zigzag chain system $\beta\text{-TeVO}_4$

<u>Yu. Savina</u>, O. Bludov, V. Pashchenko, S. Gnatchenko, A. Szewczyk, T. Zajarniuk, and M. U. Gutowska

¹B.I. Verkin Institute for Low Temperature Physics and Engineering, NASU, Kharkiv, Ukraine

²Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland

Specific heat of a β -TeVO₄ single crystal was measured by using a PPMS (Quantum Design) in the temperature range 0.1-300 K, in the magnetic field, H, ranging from 0 to 9 T. Both a magnetic and a non-magnetic contribution to the specific heat $C_P(T)$ of β -TeVO₄ were separated and analyzed. The model of 1D antiferromagnetic Heisenberg $S=\frac{1}{2}$ spin chains was found to describe satisfactorily the magnetic contribution. Three specific heat anomalies, appearing at $T=2.28\pm0.02$, 3.28 ± 0.02 , and 4.65 ± 0.02 K (H=0 T), have been detected. In order to study the field dependences of these anomalies, $C_P(T)$ was measured at several fixed values of the magnetic field oriented parallel and perpendicular to the crystallographic b-axis. As the result, the magnetic H-T phase diagrams of β -TeVO₄, for H||b and $H\pm b$, were constructed. This work was partly supported by the European Regional Development Fund, through the Innovative Economy Grant POIG.01.01.02-00-108/09.