Magnetism in R₂RhIn₈ compounds

P. Javorský,¹ P. Čermák,¹ M. Kratochvílová,¹ J. Zubáč,¹ Y. Skourski,² A.V. Andreev,³ B. Ouladdiaf,⁴ and M. Boehm⁴

¹Charles University in Prague, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic ²Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany ³Institute of Physics AS CR, Na Slovance 2, 182 21 Prague 8, Czech Republic ⁴Institut Laue Langevin, 6 rue Jules Horowitz, BP156, 38042 Grenoble Cedex 9, France

The R_2RhIn_8 compounds belong to a large system of structurally related ternary intermetallics in which the crystal structure can be described as a sequence of RX_3 and TX_2 layers, where R represent rare earth or actinide atom, T is a transition metal and X is In or Ga. The possibility of changing dimensionality in these materials by changing m and n ratio together with changing of T element gives scientists a big playground for tuning ground state properties of these compounds. In this work we present magnetic properties of R_2RhIn_8 (R = Nd, Tb, Dy, Tb, Er and Tm) compounds studied by bulk and microscopic experiments. All studied compounds order magnetically, showing complex magnetic properties with several magnetic phases.