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Creating, moving and merging Dirac points with a
Fermi gas in a tunable honeycomb lattice
Leticia Tarruell1, Daniel Greif1, Thomas Uehlinger1, Gregor Jotzu1 & Tilman Esslinger1

Dirac points are central to many phenomena in condensed-matter
physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators1,2. At a Dirac
point, two energy bands intersect linearly and the electrons behave
as relativistic Dirac fermions. In solids, the rigid structure of the
material determines the mass and velocity of the electrons, as well
as their interactions. A different, highly flexible means of studying
condensed-matter phenomena is to create model systems using
ultracold atoms trapped in the periodic potential of interfering
laser beams3,4. Here we report the creation of Dirac points with
adjustable properties in a tunable honeycomb optical lattice. Using
momentum-resolved interband transitions, we observe aminimum
bandgap inside the Brillouin zone at the positions of the two Dirac
points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inver-
sion symmetry.Moreover, changing the lattice anisotropy allows us
to change the positions of theDirac points inside theBrillouin zone.
When the anisotropy exceeds a critical limit, the two Dirac points
merge and annihilate each other—a situation that has recently
attracted considerable theoretical interest5–9 but that is extremely
challenging to observe in solids10. We map out this topological
transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to
model materials in which the topology of the band structure is
crucial, but also provide an avenue to exploring many-body phases
resulting from the interplay of complex lattice geometries with
interactions11–13.
Ultracold gases in optical lattices have become a versatile tool with

which to simulate a wide range of condensed-matter phenomena3,4.
For example, the control of interactions has led to the observation of
Mott insulating phases14–16. In fermionic systems, this provides new
access to the physics of strongly correlated materials. However, the
topology of the band structure is equally important for the properties of
a solid. A prime example is the honeycomb lattice of graphene, where
the presence of topological defects in momentum space—the Dirac
points—leads to remarkable transport properties, even in the absence
of interactions1. In quantum gases, a honeycomb lattice has recently
been realized and investigated using a Bose–Einstein condensate17,18,
but no signatures of Dirac points were observed. Here we study an
ultracold Fermi gas of 40K atoms in a two-dimensional, tunable optical
lattice, which can be continuously adjusted to create square, triangular,
dimer and honeycomb structures. In the honeycomb lattice, we
identify the presence ofDirac points in the band structure by observing
a minimum bandgap inside the Brillouin zone using interband transi-
tions. Our method is closely related to a technique recently used with
bosonic atoms to characterize the linear crossing of two high-energy
bands in a one-dimensional, bichromatic lattice19, but also provides
momentum resolution.
To create and manipulate Dirac points, we have developed a two-

dimensional optical lattice of adjustable geometry. It is formed by three
retro-reflected laser beams of wavelength l5 1,064 nm, arranged as
depicted in Fig. 1a. The interference of two perpendicular beams, X

and Y, gives rise to a chequerboard lattice of spacing l=
ffiffiffi
2

p
. A third

beam, !X, collinear with X but detuned by a frequency d, creates an
additional standing wave with a spacing of l/2. This yields a potential
of the form
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X andY interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depthsV!X andVX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds toweakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sitesA and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth,W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB5 2p/l.
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X andY interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depthsV!X andVX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds toweakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sitesA and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth,W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB5 2p/l.
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X andY interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depthsV!X andVX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds toweakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sitesA and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth,W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB5 2p/l.
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Haldane & Raghu, PRL 2008
Sepkhanov, Bazaliy, Beenakker, PRA 2007

Inside the photonic crystal !0!x!L" the Maxwell equa-
tions reduce to the Dirac equation #1$

% 0 − ivD!!x − i!y"
− ivD!!x + i!y" 0

&%"1

"2
& = !# − #D"%"1

"2
& ,

!2.3"

for the amplitudes "1, "2 of a doublet of two degenerate
Bloch states at one of the corners of the hexagonal first Bril-
louin zone.

As explained by Raghu and Haldane #1,7$, the modes at
the six zone corners Kp, Kp! !p=1,2 ,3", which are degenerate
for a homogeneous dielectric, are split by the periodic dielec-
tric modulation into a pair of doublets at frequency #D and a
pair of singlets at a different frequency. The first doublet and
singlet have wave vectors at the first set of equivalent corners
Kp, while the second doublet and singlet are at Kp!. Each
doublet mixes and splits linearly forming a Dirac point as the
wave vector is shifted by $k from a zone corner. The Dirac
equation !2.3" gives the envelope field %ei$k·r of one of these
doublets.

The frequency #D and velocity vD in the Dirac equation
depend on the strength of the periodic dielectric modulation,
tending to #D=c!'Kp'=c!'Kp!'=4&c! /3a and vD=c! /2 in the
limit of weak modulation. !The speed of light c! in the ho-
mogeneous dielectric is smaller than the free space value c."

Equation !2.3" may be written more compactly as

− ivD!! · '"" = $#", $# ( # − #D, !2.4"

in terms of the spinor "= !"1 ,"2" and the vector of Pauli
matrices '= !'x ,'y". In the same notation, the velocity op-
erator for the Dirac equation is vD'. The mean photon num-
ber flux jD in the x direction is therefore given by

jD = vD"*'x" = vD!"1
*"2 + "2

*"1" . !2.5"

The termination of the photonic crystal in the y direction
introduces boundary conditions at the edges y=0 and y=W
which depend on the details of the edges, for example, on
edges being of zigzag, armchair, or other type. For a wide
and short crystal, W(L, these details become irrelevant and
we may use periodic boundary conditions #"!x ,0"
="!x ,W"$ for simplicity.

III. WAVE MATCHING

The excitation of modes near a Dirac point has been dis-
cussed by Notomi #8$, in terms of a figure similar to Fig. 2.
Because the y component of the wave vector is conserved
across the boundary at x=0, the doublet near K1= !Kx ,Ky" or
K2= !−Kx ,Ky" can only be excited if the incident radiation
has a wave vector k= !kx ,ky" with ky near Ky. The conserva-
tion of ky holds up to translation by a reciprocal lattice vec-
tor. We will consider here the case of 'k'! 'Kp', where no
coupling to K3 is allowed. The actual radius of the equal
frequency contour in the free space at #=#D will depend on
a particular photonic crystal realization.

The incident plane waves Eincident=E0eik·r in free space
that excite Bloch waves at a frequency $#=#−#D have ky
=Ky#1+O!$# /#D"$ and kx=k0#1+O!$# /#D"$ with

k0 = )!#D/c"2 − Ky
2. !3.1"

For $#)#D we may therefore write the incident wave in the
form

x

y

W

L
a

FIG. 1. !Color online" Photonic crystal formed by a dielectric
medium perforated by parallel cylindrical holes on a triangular lat-
tice !upper panel: front view; lower panel: top view". The dashed
lines indicate the radiation incident on the armchair edge of the
crystal, with the electric field polarized in the z direction.
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FIG. 2. Right panels: Hexagonal first Brillouin zone of the pho-
tonic crystal !top" and dispersion relation of the doublet near one of
the zone corners !bottom". Filled and open dots distinguish the two
sets of equivalent zone corners, centered at Kp and Kp!, respectively.
The small circles centered at the zone corners are the equal-
frequency contours at a frequency # just above the frequency #D of
the Dirac point. Left panels: Equal-frequency contour in free space
!top" and corresponding dispersion relation !bottom". A plane wave
in free space with kx close to k0 !arrows in the upper left panel"
excites Bloch waves in the photonic crystal with k close to K1 and
K2 !arrows in the upper right panel", as dictated by conservation of
ky and # !dotted horizontal lines".
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brief, the derivation starts with the secular equation (4),
where the term cot!L=cb is expanded up to the first order
in !!, where !! ¼ !"!D. In the same manner, the
terms "#$ are also expanded up to the first order in !!
and !K, where !K ¼ Kjj "KD. After a lengthy derivation
Eq. (4) becomes

!!=cD !K # ðx̂þ iŷÞ
!K # ðx̂" iŷÞ !!=cD

! "
B#

B$

! "
¼ 0: (8)

This equation is the Dirac equation in the 2Dmomentum
space, and it shows that the linear combination of surface
waves described by equation (1) can be described, in the
neighborhood of the Dirac point KD, by a single wave
propagating with wave vector !K and satisfying the above
equation. Note that to obtain the equation in differential
form we should replace !K by the differential operator
"ir, and we will recover the eigenvalue equation with
eigenvalues !!=cD and eigenvectors B#, B$.

The values for the Dirac frequency !D and Dirac veloc-
ity cD are obtained from the Taylor expansion of the terms
"#$ and some tedious algebra, as explained in [19], where
expressions for !D and cD as a function of R0 and L are
obtained.

Figure 3 shows !D (upper panel) and cD (lower panel)
as a function of boreholes’ depth L=a for a fixed radius
R0 ¼ 0:26a. Note that increasing the length L of boreholes
decreases either !D as well as cD. The former decreases
because the deeper the boreholes, the larger the wavelength
of the fundamental mode of the hole, which is related to
Dirac frequency through Eq. (7). The later decreases as a
direct consequence of the decreasing of Dirac frequency,
since this velocity is the slope of the line going from (0, 0)
to (KD, !D) in the band structure.

To demonstrate the linear dispersion relation j!Kj ¼
'j!"!Dj=cD resulting from Eq. (8), and to confirm

the values of !D and cD resulting from our semianalytical
theory [19], we have carry out experiments on a Plexiglas
plate with cylindrical perforations distributed in a honey-
comb lattice. A total of 1113 boreholes were drilled in a
plate of dimension 300( 100 mm. The lattice constant is
a ¼ 5:77 mm, being the distance between boreholes d ¼
3:33 mm. The radius and depth of the boreholes are R0 ¼
1:5 mm ¼ 0:26a and L ¼ 2:88 mm ¼ 0:5a, respectively.
With these parameters and using cb ¼ 346 m=s the pre-
dicted values of Dirac’s frequency and velocity are %D ¼
!D=2& ¼ 22 kHz and cD ¼ 29:06 m=s. In reduced units,
these values correspond to the symbols in Fig. 3, which are
!Da=2&cb ¼ 0:367 and cD ¼ 0:084cb ) cb=12, which
means these waves travels about 12 times slower than
they do in free space.
The experimental set up is shown in Fig. 4. The tweeter

at grazing incidence excites acoustic surface waves as
explained in [21], whose relative phase is measured by
two microphones located at 1 mm over the surface. The
excited sound field is a Gaussian pulse with central fre-
quency %0 ¼ 22 kHz, and width !% ¼ 5 kHz, so that the
predicted Dirac frequency is included in the frequency
range of the time signal. A total of 500 averaged spectra
are taken by microphones 1 and 2, then from the angle of
the cross spectrum the phase delay is obtained.
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FIG. 3 (color online). Dirac frequency (upper panel) and Dirac
velocity (lower panel) as a function of boreholes depth L. Both
graphs are obtained for a fixed boreholes radius of R0 ¼ 0:26a.
The circles indicates the values at L ¼ 0:5a, which is the value
used in the sample characterized.

FIG. 4 (color online). Picture of the experimental setup. A
loudspeaker at grazing incidence is employed to excite acoustic
surface waves propagating on a Plexiglas plate with cylindrical
boreholes distributed in a honeycomb lattice. Boreholes appear
in the picture as white points due to refraction of light. The inset
shows a schematic view of the boreholes geometry. Two micro-
phones located at different points on the surface measure the
phase delay between the propagating surface waves.
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‘‘free photon’’ TE plane waves with speed c0 split into a
‘‘Dirac-point’’ doublet with ! ! !D " vDj!kj#
O$j!kj2%, where !D ! c0jKj&1' "=4#O$"%2(, vD !
c0=2#O$"%, and a singlet ! ! !0 #O$j!kj2%, !0 !
c0jKj&1# "=2#O$"2%(.

We now perturb the Dirac points by a Faraday term
(which explicitly breaks time-reversal symmetry), with
an axis normal to the xy plane, added to the permittivity
tensor: #xy ! '#yx ! i#0#$$r; !%, where

 $$r; !% ! $0$!% # $1$!%VG$r%; (7)

$0$!%, $1$!% are real odd functions of !. We assume that,
for! ) !D, j$0$!%j, j$1$!%j * j"j * 1, with negligible
frequency dependence. The Dirac points now split, with
dispersion ! ! !D " vD$j!kj2 # %2%1=2, where, to lead-
ing order in $, % ! jKj&32$1$!D% ' 3"$0$!D%(.

For small %, the Berry curvatures of the upper and lower
kz ! 0 bands near the split Dirac points are

 Fxy" $!k% ! "1
2%$j!kj2 # %2%'3=2: (8)

There is a total integrated Berry curvature of "& near each
Dirac point, giving total Chern numbers "1 for the split
bands. By inversion symmetry, the Berry curvatures at the
two Dirac points have the same sign; if the gap was opened
by broken inversion symmetry, with unbroken time-
reversal invariance, they would have opposite sign, and
the Chern number would vanish.

We now consider an adiabatically spatially varying
Faraday term parametrized by a %$r% that is positive in
some regions and negative in other regions. The splitting of
the Dirac points vanishes locally on the line where %$r% !
0. It is necessary that, in the perfectly periodic structure
with % ! 0, there are no photonic modes at other Bloch
vectors that are degenerate with the modes at the Dirac
points.

Such frequency isolation of the Dirac points cannot
occur in the weak-coupling ‘‘nearly-free photon’’ limit,
but can be achieved, at least for kz ! 0 modes, in hexago-
nal arrays of infinitely long dielectric rods parallel to the z
axis. An example can be seen in Fig. 1(a) of Ref. [9]. That
figure was exhibited to demonstrate a frequency gap be-
tween the first and second TE bands, but incidentally also
shows that the second and third TE bands are separated by
a substantial gap except in the vicinity of the BZ corners,
where they touch at Dirac points. The corresponding TM
bands were not given in Ref. [9], but we found that the
Dirac-point frequency !D is also inside a large gap of the
TM spectrum (see Fig. 1). When a Faraday term is added,
the bands forming the Dirac point in Fig. 1 split apart, and
each now nondegenerate band will have associated with it a
nonzero Chern number (see Ref. [5] ).

The Faraday effect incorporated to the hexagonal array
of rods explicitly breaks time-reversal symmetry on the
scale of the unit cell of the metamaterial: the permittivity
tensor acquires an imaginary off-diagonal component hav-

ing the periodicity of the unit cell, as described above. A
hexagonal array consisting of a material having a large
Verdet coefficient, such as a rare-earth garnet with ferro-
magnetically ordered domains, would give rise to such an
effect.

While these kz ! 0 Dirac-point modes are not degener-
ate with any other kz ! 0 modes, they are degenerate with
kz ! 0 modes. To fully achieve a ‘‘one-way’’ edge-mode
structure, the light must also be confined in the z direction,
with Dirac points at a frequency that is nondegenerate with
any other modes. To design such structures, it will be
necessary to vary the filling factor of the rods along the z
direction so that light remains confined to regions of rela-
tively larger filling factors. The technical challenge would
be to vary the filling factors without introducing any modes
into the bulk TE gaps surrounding the Dirac points.

Let ju'$"kD%i, ' ! " be the degenerate solutions of
Eq. (1) at a pair of isolated Dirac points, normalized so
hu'$"kD%jB0$!D%ju'0$"kD%i ! B0!''0 . Now add a
Faraday perturbation !B$r; !%: in degenerate perturbation
theory, normal modes with small !! ! !'!D have the
form

P
';" "

' $r%U$"kD; r%u'$"kD; r%. For slow spatial
variation, there is negligible mixing between modes at
different Dirac points, and  "

' $r% is the solution of

 

X

'0
!' iJa?ra '!D!B$r%""''0 "

'0$r% ! !!B0 "
' $r%; (9)

where Ja? and !B$r% are 2+ 2 matrices given by
 

$Ja?%"''0 ! hu'$"kD%jJaju'0$"kD%i;
a ! x; y; !!B$r%"
! hu'$"kD%j!B$r; !D%ju'0$"kD%i:

(10)

FIG. 1. Photon bands for kz ! 0 electromagnetic waves prop-
agating normal to the axis of a hexagonal 2D array of cylindrical
dielectric rods; a is the lattice constant. As in Fig. 1(a) of
Ref. [9], the rods fill a fraction f ! 0:431 of the volume, with
dielectric constant # ! 14, and they are embedded in an # ! 1
background. The lowest five 2D bands are well separated from
higher bands, except near a pair of ‘‘Dirac points’’ at the two
distinct Brillouin zone corners (J).
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Plasmonic analogue of graphene

individual nanoparticle
localized surface plasmon 

nanoparticle array
collective plasmon 

(can propagate over macroscopic distances)

Plasmonic metamaterial

LETTERS

Achieving control of light-material interactions for photonic
device applications at nanoscale dimensions will require 
structures that guide electromagnetic energy with a lateral 

mode confinement below the diffraction limit of light.This cannot be
achieved by using conventional waveguides1 or photonic crystals2.
It has been suggested that electromagnetic energy can be guided below
the diffraction limit along chains of closely spaced metal
nanoparticles3,4 that convert the optical mode into non-radiating
surface plasmons5. A variety of methods such as electron beam
lithography6 and self-assembly7 have been used to construct metal
nanoparticle plasmon waveguides. However, all investigations of the
optical properties of these waveguides have so far been confined to
collective excitations8–10, and direct experimental evidence for energy
transport along plasmon waveguides has proved elusive. Here we
present observations of electromagnetic energy transport from a
localized subwavelength source to a localized detector over distances
of about 0.5 µm in plasmon waveguides consisting of closely spaced
silver rods. The waveguides are excited by the tip of a near-field
scanning optical microscope,and energy transport is probed by using
fluorescent nanospheres.

The transport of electromagnetic energy in plasmon waveguides
consisting of closely spaced metal nanoparticles relies on near-field
coupling between surface plasmon–polariton modes of adjacent
particles. This type of guiding due to near-field coupling has recently
been demonstrated experimentally in macroscopic analogues operating
in the microwave regime6,11. At the submicrometre scale, plasmon
waveguides were theoretically and numerically analysed,allowing for the
investigation of inter-particle interactions3, and the dispersion relation
and group velocity for energy transport4. The characteristics of optical-
pulse propagation in plasmon waveguides consisting of spherical or
spheroidal nanoparticles were determined by using finite-difference
time-domain simulations12. Far-field polarization spectroscopy
experiments on ordered two-dimensional arrays of Au and Ag
nanoparticles with submicrometre inter-particle spacing have
confirmed that electromagnetic interactions between the particles are
present, revealing energy shifts of the collective plasmon resonances of

the particle arrays that are dependent on inter-particle distances13,14.
It has further been shown that the resonance energy shifts that occur in
one-dimensional arrays consisting of closely spaced Au particles enable
estimation of the group velocity and energy attenuation length of
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Local detection of electromagnetic energy
transport below the diffraction limit in metal
nanoparticle plasmon waveguides
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Figure 1 Far-field extinction spectrum of Ag nanoparticle chains and single
particles.The far-field extinction spectrum of a plasmon waveguide consisting of Ag
nanorods with a 3:1 aspect ratio and a surface-to-surface spacing of 50 nm between
adjacent particles shows a plasmon resonance peak shift to higher energies (red triangles
and Lorentz fit) compared with the extinction spectrum of isolated,non-interacting
particles (black squares and Lorentz fit).The exciting light was polarized along the long axis
of the nanorods,perpendicular to the particle chain axis.The inset shows a scanning
electron micrograph of the plasmon waveguide layout under study.
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Recently, researchers have found that amyloid-derived
diffusible ligands (ADDLs) cause neurological dysfunction
relevant to memory and are potential AD biomarkers. LSPR
nano-biosensors have been developed to detect ADDLs
using an anti-ADDL antibody/ADDL/anti-ADDL antibody
sandwich assay [16, 17]. Unfortunately, the Cr adhesion
layer that is used to increase the adhesion between the Ag
nanoparticles and the glass substrate causes an abnormal
peak shift in the LSPR spectra for non-specific reactions.
Ordinarily, LSPR peak shift should not be observed for
detection performed via the non-specific reaction. Fortu-
nately, the abnormal LSPR peak shift can be eliminated
using an n-propyl trimethoxysilane (PTMS)-based passiv-
ation technique that is discussed in detail in the remainder
of this paper.

Experimental

Fabrication of triangular Ag nanoparticles

The nanosphere lithography (NSL) technique was used to
fabricate discrete, triangular Ag nanoparticles [11, 14]. Of a
chemical solution with polystyrene spheres (400-nm diam-
eter), 2.2 μL was spin-coated onto a glass substrate cleaned
by a caribe solution. After natural drying, a monolayer of
nanospheres with a hexadecanethiol distribution was
formed. The monolayer of nanospheres was used as a
masking material. The sphere-covered glass sample was
fixed in a chamber with vacuum evaporation equipment. A
4-nm-thick Cr film was deposited on the nanosphere mask
to improve the adhesion of the nanoparticles fabricated in
the following steps. A 25-nm-thick Ag film was then
deposited on the sample surface. Next, the sample was
incubated in ethanol and the polystyrene spheres were
removed by ultrasonic vibration for 3 to 5 min. The pure
Ag nanoparticles and the Cr adhesion layer were left on the
glass substrate, as shown in Fig. 1. The scanning electron
microscopy (SEM) image shows that the individual nano-
particles have a triangle shape with a horizontal length of
90 nm. The average height of the nanoparticles was mea-
sured to be 35 nm using a two-dimensional stylus profiler.

Experimental setup

11-Mercaptoundecanoic acid (11-MUA), 1-octanethiol (1-
OT), and 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide
hydrochloride (EDC) were acquired from Sigma-Aldrich
Corp. Biotin and streptavidin were purchased from Pierce.
Absolute ethanol and 10 mM phosphate-buffered saline
(PBS), pH=7.4, were purchased from Jinshan Company.
Ag wire (99.99%, 1-mm diameter) was obtained from Jubo
Company. The glass substrate was cleaned in a piranha

solution (1:3, 30% H2O2/H2SO4) at 80 °C for 30 min, and
then cooled by high-pressure N2. Once cooled, the glass
substrates were rinsed with copious amounts of second
distilled water and then sonicated 60 min in 5:1:1 H2O/
NH4OH/30% H2O2. Then the glass was rinsed repeatedly
with water and stored in water until used.

The extended NSL is employed here to create the
surface-confined rhombic Ag nanoparticles supported on a
glass substrate. This method is developed on the basis of
the NSL [12]. For these experiments, the single layer of
size-monodisperse polystyrene nanospheres and glass nano-
spheres solution ~10 μl were spin-coated onto the glass
substrate to form a deposition mask, followed by a process
of etching off the nanospheres from the glass using
hydrofluoric acid. After that, Ag thin film was deposited
on the nanosphere masks using thermal or electron beam
evaporation. After removal of polystyrene nanospheres by
sonication in absolute ethanol for 3 min, well ordered two-
dimensional rhombic nanoparticle arrays were finally
obtained on the substrate.

ADDLs detection

The Cr adhesion layer was observed to slightly broaden and
quench the amplitudes of the LSPR spectra of the nano-
particles (compared to that of the pure Ag nanoparticles, the
variation is less than 10%). The experimentally inserted
adhesion layer, designed for the nanoparticles, requires
rigorous fabrication and chemical conditioning processes,
as shown in Fig. 2. Before the reaction process, a self-
assembled monolayer (SAM) composed of 1:3 11-
Mercaptoundecanoic acid (11-MUA)/1-octanethiol (1-OT)
was first formed on the glass surface after incubating in
ethanol for 24 h. After completely cleaning the sample, the
biotin was covalently attached to the carboxylate groups

Fig. 1 SEM image of topography of the triangular Ag nanoparticles
fabricated using self-assembly method
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‣ subwavelength optics
‣ plasmonic "circuitry"
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Individual nanoparticle

E(t) = E0 cos (ωt)

2r � λ

(oscillating dipole moment)

Localized surface plasmon: 
➡ dipolar collective excitation of the electronic center of mass
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Two nanoparticles

V =
p · p� − 3(p · n)(p� · n)

�m|R−R�|3
p = −eNeh(R)p̂

n =
R−R�

|R−R�|

p p�

R R�

r

a

Dipole-dipole interaction:
➡ quasistatic approximation for point-like dipoles (r � a/3� λ)

Brongersma, Hartman, Atwater, PRB 2000
Park & Stroud, PRB 2004
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Many nanoparticles 

A
B

e1

e2

e3

a

a1

a2

Cj = 1− 3 sin2 θ cos2 (ϕ− 2π[j − 1]/3)

H0 =
�

s=A,B

�
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�
Π2

s(Rs)
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+
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2
0h

2
s(Rs)

�

Hint =
(eNe)2

�ma3

�
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3�

j=1

CjhB(RB)hA(RB + ej) ‣ nearest-neighbor interactions only

Honeycomb plasmonic lattice: 

(θ, ϕ): polarization of the dipoles

GW, Woollacott, Barnes, Hess, Mariani, PRL 2013



Analogy with electrons in graphene

Bosonic ladder operators: 

aR =
�

Mω0

2� hA(R) +
iΠA(R)√
2�Mω0

bR =
�

Mω0

2� hB(R) +
iΠB(R)√
2�Mω0

Ω = ω0

� r
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� ω0
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�
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3�

j=1

Cjb
†
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�
aRB+ej

+ a
†
RB+ej

�
+ H.c.

➡ cf. tight-binding Hamiltonian for electrons in graphene!

Graphene Plasmonic graphene
fermions (electrons) bosons (plasmons)

AB sublattices linked by kinetic process
(hopping of electrons)

AB sublattices linked by interactions
(dipole-dipole)

equal hopping matrix elements
                  tunable couplings 

(cf. strained graphene)

                anomalous term
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Exact diagonalization

Bogoliubov #1: 

fq =
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j=1

Cj exp (iq · ej)H = �ω0
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†
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†
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†
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†
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Bogoliubov #2: 

Starting Hamiltonian:
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1√
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Plasmon dispersion
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Plasmon dispersion
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Plasmon dispersion

➡ Dirac "lines"
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Plasmon dispersion
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Dirac-like plasmons

Close to K point: 

group velocity: 

chirality (helicity)

ω
± q

/ω
0

qxa

qyaqya

qxa

➡ Collective plasmons should show similar effects to electrons in graphene
• absence of backscattering
• Klein paradox
• Berry phase of π
• ...

v = 3Ωa/2 ≈ c/100

H
eff
k = �ω0 − �vτz ⊗ σ · k

ω±k � ω0 ± v|k|

σ · k̂ = ±

spinor eigenstates: 

ψ±k,K =
1√
2
(1, e∓iξk , 0, 0)



Plasmon polaritons

How do plasmons couple to light in periodic arrays of nanoparticles?

➡ plasmon + photon = plasmon polariton

1202 C. J. MEECHAN AND J. A. BRINKMAN

eV&lV»eD~r D; %4)
therefore from Eq. (33) one concludes that interstitials
are primarily captured by vacancies.
Case B.—Vacancies migrate in Region III, inter-

from the migration of either interstitials or vacancies.
The migration of more than a few percent of these
defects to dislocations would cause an observable change
in the reaction order. Since this is not observed, the
probability that the defects migrating in Region III
are captured by dislocations is small relative to the
probability that they are captured by vacancies:
Case A.—Interstitials migrate in Region III:

stitials having migrated previously:

evo.vv))nDO vD.
Assuming that

&ID &VD)
and

~rv&~vv,
then

evo.lv))mDo rD,'

therefore, the same conclusion concerning migration of
interstitials can be drawn as in Case A.
Thus, whenever interstitials migrate, the majority of

them should be captured by vacancies.
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Atomic Theory of Electromagnetic Interactions in Dense Materials*
U. PANO

Fateonat Bnreag of Standards, Wastnngton, D. C.
(Received May 8, 1956)

This theory develops a quantum analog of the classical electron oscillator model. It argues first that the
Hamiltonian of long-wave excitations of matter is equivalent to that of an assembly of oscillators under very
general assumptions. Next, these oscillators are coupled with the electromagnetic field oscillators and the
normal modes of the coupled system are analyzed. The normal modes of longitudinal and transverse excita-
tion have different spectra; the transverse frequencies depend strongly on the wavelength but the longi-
tudinal ones do not. If the "longitudinal photons" are eliminated after the transformation to normal
modes, the resulting Coulomb law has the dielectric constant in the denominator. The dielectric response
law is expressed as a series of oscillations and also in terms of Van Hove s correlation function. Horn-approxi-
mation theory of the collisions of fast charged particles with the assembly of normal mode {longitudinal
and transverse) oscillators yields the same total cross section as Fermi's macroscopic theory. The transverse
excitations include the Cerenkov radiation.

1. INTRODUCTION

HE dielectric constant e of a material is a property
relevant to electrodynamic phenomena in which

the fields vary but little from one atom to the next.
From an atomistic standpoint, e has been interpreted
by the classical model in which atomic electrons can
perform forced oscillations about their equilibrium
positions; no corresponding quantum mechanical theory
seems to have been developed. '
This paper presents an atomistic theory of dielectric

eGects which considers three coupled quantum mechan-
ical systems: an aggregate of atoms, the long-wave
components of the electromagnetic 6eld, and additional
charged particles not included in the aggregate of atoms.
The immediate aim is to rederive certain formulas of
macroscopic electrodynamics, specifically: (a) the

*Supported in part by the Ofhce of Naval Research and the
U. S. Atomic Energy Commission.' The quantum electrodynamics in a medium whose dielectric
properties are characterized by a constant e, but are not derived
from an atomic model, has been developed by J. M. Jauch and
K. M. Watson, Phys. Rev. 74, 950 and 1485 (1948); 75, 1249
(1949).

Coulomb interaction eies/eris of charges in a dielectric
and the equivalent equation div(eE) =4n p, and (b) the
probability of energy losses of a charged particle which
was calculated macroscopically by Fermi, and, as a
function of scattering angle, by Hubbard. ' ~

The macroscopic treatment of Coulomb interaction
has proved quantitatively successful in the theory of
donor levels in semiconductors, ' even though applied to
systems of the order of 100A only. Inelastic electron
collisions in solids have been the object of much recent
work. 4 The energy loss spectrum in these collisions is
clearly related to the dielectric constant e(a&) of each
material by the Fermi theory, especially in the form

s (a} E. Fermi, Phys. Rev. 57, 485 (1940};J. Hubbard, Proc.
Phys. Soc. (London) A68, 976 (1955}.(b) A theory with similar
aims but with a different approach has been developed recently
by D. A. Tidman, Nuovo cimento 3, 503 (1956) and Nuclear
Phys. (to be published).
s W. Kohn, Phys. Rev. 98, 1856 (1955). I wish to thank Pro-

fessor Kohn for calling my attention to this problem and for a
discussion of his own approach to an atomistic theory of the
interaction.

4 See, for example, Marton, Leder, and Mendlowitz, Advances
in Electronics and E/ectron I'hysics (Academic Press, Inc., New
York, 1955), Vol. 7, p. 183.
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Theory of the Contribution of Excitons to the Complex Dielectric
Constant of Crystals*t

J. J. HopxrzLn f.
Physics Department, Cornell University, Ithaca, Xm Fork

(Received July 16, 1958)

It is shown that the ordinary semiclassical theory of the absorption of light by exciton states is not
completely satisfactory (in contrast to the case of absorption due to interband transitions). A more complete
theory is developed. It is shown that excitons are approximate bosons, and, in interaction with the
electromagnetic field, the exciton field plays the role ef the classical polarization field. The eigenstates of
the system of crystal and radiation field are mixtures of photons and excitons. The ordinary one-quantum
optical lifetime of an excitation is infinite. Absorption occurs only when "three-body" processes are
introduced. The theory includes "local field" effects, leading to the Lorentz local field correction when it
is applicable. A Smakula equation for the oscillator strength in terms of the integrated absorption constant
is derived.

for which the wavelength of light is much greater than
a lattice constant. '
In Sec. III the quantum theory of a classical dielectric

is developed. This problem reduces to the interaction
of the radiation field with a second boson field, the
polarization field. Some possible generalizations of
the classical dielectric theory are brieQy discussed.
Section IV is devoted to constructing an approximate
exciton Hamiltonian and to finding the interaction
between excitons and photons for this approximate
Hamiltonian. It is shown that excitons are approximate
bosons and, in interactions with the electromagnetic
6eld, play the role of the quantized polarization field
of Sec. III.
In Sec.V the interactions which cause true absorption

in crystals are introduced. These interactions result in
finite lifetimes for the mixed eigenstates constructed in
Sec. IV, and can be treated in terms of a complex
dielectric constant. The final section is a summary of
the theory, with emphasis on the application to
experiments.

I. INTRODUCTION
'HE lowest energy excited states of insulating
crystals are usually states of an electron in the

conduction band bound to a hole in the valence band.
These bound states, called excitons, were first intro-
duced by Frenkel' in 1931. The existence of such
nonconducting excited states has been tentatively veri-
fied in both extremes of exciton models, the Frenkel
(tight-bonding) model and the Wannier (weak-bonding)
model, by means of optical absorption experiments in
the visible and near ultraviolet regions. '
The usual method of calculating the optical properties

due to exciton states is by use of the semiclassical
theory of radiation. This method is satisfactory for
the calculation of the dielectric constant in frequency
regions of no absorption. The use of this method to
treat optical absorption by exciton states raises
difhculties perculiar to sets of energy states for which
there is but one crystal state having a given wave
number k in a 6nite energy interval. The problem of
the description of the fundamental absorption process
is the subject of Sec. II. This problem was the motiva-
tion for the investigation of the exciton-photon system.
The purpose of the present work is to formulate the

problem of the optical properties of excitons in a more
rigorous manner than the semiclassical theory through
the use of a quantum-electrodynamical formalism
and to present a more complete view of the absorption
process. The theory, as developed here, is applicable
only to crystals exhibiting optical isotropy. The
frequency region considered is limited to frequencies
*Based on a Ph.D. thesis submitted to Cornell University.
t A summary of this work was given at the March meeting of

the American Physical Society LJ. J. Hopfield, BulL Am. Phys.
Soc. Ser. II, 3, 125 (1958)j.
$ Present address: Bell Telephone Laboratories, Murray Hill,

New Jersey.' J. Frenkel, Phys. Rev. 37, 17 (1931).' For experimental evidence of tight-binding excitons, see
L. Apker and E. Taft, Phys. Rev. 79, 964 (1950);81, 698 (1951)
87, 814 (1951).For experimental work on weak-binding exciton
see Gross, Zakharchenya, and Reinov, Doklady Akad. Na
S.S.S.R. 92, 265 (1953); 97, 57, 221 (1954). J. H. Apfel an
L. N. Hadley, Phys. Rev. 100, 1689 (1955).

II. PROBLEMS IN THE TREATMENT OF THE
OPTICAL PROPERTIES OF EKCITONS

The general theory of the interaction of radiation with
insulating crystals is well known. 4 In order to show why
the theory as it exists is not complete, the nature of
the fundamental absorption process for exciton states
will be discussed in detail. The usual description of the
absorption process will be shown to be unsound. The
inappropriateness of the usual description was the
incentive for developing a more complete theory of
the optical properties of exciton states.
Unessential complications in the discussion can be

avoided by choosing a very simple model of an insulating
crystal. The model used here is a simple cubic array of

~The general mathematical approach is the same as that of
s, U. Fano, Phys. Rev. 103, 1202 (1956).

4For a brief review of the semiclassical theory and further
d references, see F.Seitz, The 3IoderN Theory ofSolsds (McGraw-Hill

Book Company, Inc., New York, 1940), pp. 647 ff.
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translational invariance: kphoton = kplasmon



Simple cubic lattice 

Tan et al., Nature Nanotech. 2011
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Conclusion

GW, C. Woollacott, W.L. Barnes, O. Hess, E. Mariani
Dirac-like plasmons in honeycomb lattices of metallic nanoparticles

Phys. Rev. Lett. 110, 106801 (2013)

 Plasmons in honeycomb lattices of metallic nanoparticles: 
• massless Dirac-like bosons
• similar properties as electrons in graphene 
• fully tunable spectrum 

 Plasmon polaritons in 3d (cubic) arrays: 
• polaritonic band gap can be modified w/ light polarization
• tunable optical properties 

GW, E. Mariani
Tunable plasmon polaritons in interacting arrays of metallic nanoparticles 

unpublished


