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Plasmons: photons 4 conduction electrons

Plasmon oscillation at
dielectric/metal interface:
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From [Barnes et al., Nature 2003]
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Surface Plasmon Polariton

@ Collective oscillation of
electrons and electric field.

@ Propagating along the
interface.

@ Momentum mismatch
kp > w/c results in field
enhancement (‘compressed

light').

Applications

@ Nanophotonics: optics at
subwavelength scale.

@ Strong light-matter
interaction: sensors.
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Plasmons: photons 4 conduction electrons

Plasmon dispersion at a Si/Ag
interface:
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From [Jablan et al., PRB 2009]
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Surface Plasmon Polariton
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Plasmons in graphene

Screened Coulomb interaction in
graphene:

X
+ Y=

[Wunsch, Stauber, FS, Guinea , NJP
2006]
[Hwang, Das Sarma, PRB 2007]
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Screening: dielectric function

e(k,w)
@ Coulomb interaction vy is
screened by e(k,w):

vl = v Je(k,w)

@ Random-Phase-
Approximation: sum up all
bubble insertions.

€ERPA — 1-— an(o)(k,w)

@ The zeros of egpa yield the
plasmon dispersion.
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Plasmons in graphene

Plasmon dispersion
in free-standing
graphene (e.q = 1):

[Wunsch et al., 2006]
[Jablan et al., 2009]
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Graphene plasmons: long lifetimes, high field confinement and tuneability

For small k: @ Tuneable via Ef. (In situ via gate

voltage.
w(k) ~ \/k EF[€cst )

@ Sensitive to environment via €qg.
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Plasmons in graphene — applications
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Polar substrates: hybridized phonon-plasmon states

Wave number (cm™)
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Plasmon dispersion in
graphene on SiO».

There are three branches
instead of one. (From [Yan
et al., Nat. Photon. 2013].)
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Polar substrates: hybridized phonon-plasmon states

Coupling to substrate Interaction with substrate phonons

phonons: @ Polar lattice vibrations in substrate
create electric field.
K K- @ Graphene electrons couple to
ééé substrate phonons. [Schiefele, FS,
‘/15’ Guinea, PRB 2012

Phonon—plasmon modes

@ Graphene plasmon hybridizes with
substrate phonons.

@ Dispersion splits into branches.

@ Plasmon inherits long phonon
lifetime.
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Polar substrates: hybridized phonon-plasmon states

Electron/phonon content
of hybridized modes:
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[Freitag et al., Nat. Commun.
2013]
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Interaction with substrate phonons

| A

@ Polar lattice vibrations in substrate
create electric field.

@ Graphene electrons couple to
substrate phonons. [Schiefele, FS,
Guinea, PRB 2012]

Phonon—plasmon modes

@ Graphene plasmon hybridizes with
substrate phonons.

@ Dispersion splits into branches.

@ Plasmon inherits long phonon
lifetime.
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How to launch plasmons — overcome momentum mismatch
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[Chen et al., Nature 2012].
[Yan et al., Nat. Photon. 2013]
Near field optics

o Scatter light at AFM tip. Sub-wavelength structures
. @ Patterned graphene ribbons.
o Narrow tip, large _ )
momentum uncertainity. o Ribbon width selects

plasmon wavevector.
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How to launch plasmons — our proposal

Excite a surface acoustic wave (SAW)

@ An interdigital transducer (IDT) on

a piezoelectric film excites a A Koro
sinusoidal SAW. [Ruppert et al., PRB
2010]
electrode
~
w
\ ko 27/Ag W
electrode | —
substrate !

.
1
.
1
.

@ SAW deforms graphene into a /" Resonance:
diffraction grating. 7 Koy + 21/ = Kp(wo)

@ Laser light scattered at the
deformation excites plasmons.
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How to launch plasmons — our proposal

Sketch of the device:
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Features and advantages

@ Scalable approach — allows
for integrated devices (no
AFM).

@ Excites propagating
plasmons in extended
graphene sheet (instead of
patterned structures).

@ No plasmon scattering at
ribbon edges.

@ Coupling between laser and
plasmon electrically
switchable (via IDT).
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How to launch plasmons — our proposal

- Transmittance vs. frequency with
Efficiency )
— . and without the SAW:
@ plasmon excitation results in

a dip in transmission
spectrum TTM,
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@ Calculated extinction values

1—T(6)/T(0) comparable )

to those achieved with 1% o140

ribbon structures. [Yan et al., Extinction spectrum:

Nat. Photon. 2013] 20 ' '
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Summary

TIONS

By electrically exciting a diffraction grating, we
can couple laser light to graphene plasmons.

MARIE CURIE

@ The laser-plasmon coupling is switchable.

@ Propagating plasmons in an extended
graphene sheet are excited.

@ No problems with unclean edges in patterned
graphene.

@ A versatile building block for future
integrated plasmonic devices.

See arXiv:1309.0767. 95’(
IA\
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