Structure and hyperfine fields of $DyMn_{6-x}Fe_xGe_6$ ($0 \le x \le 6$) alloys

Z. Śniadecki¹, B. Idzikowski¹, B. Mielniczuk¹, J.-M. Grenèche², U.K. Rössler³

 ¹ Instytut Fizyki Molekularnej PAN, M. Smoluchowskiego 17, 60-179 Poznań
² Laboratoire de Physique de l'Etat Condensé, UMR CNRS 6087, Université du Maine, F 72085 Le Mans Cedex 9, France
³ Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden P.O. Box 270116, D-01171 Dresden, Germany

The multicomponent $DyMn_{6-x}Fe_xGe_6$ ($0 \le x \le 6$) alloy series, which is derived from a ternary system combining transition metals (TM) Fe and Mn, rare-earths element (R) Dy, and metalloid (M) Ge, belongs to a group of magnetic compounds with complex magnetic ordering. The chosen compositions form a pseudo-binary series of alloys between $DyFe_6Ge_6$ and $DyMn_6Ge_6$. Those two compounds crystallize with orthorhombic TbFe₆Sn₆-type structure (space group *Cmcm*) and hexagonal HfFe₆Ge₆-type structure (*P6/mmm*), respectively, and both behave as antiferromagnet. The R- and TM- magnetic sublattices in $DyMn_6Ge_6$ order simultaneously. This compound shows magnetic ordering with a transition in the range 80 – 100 K from a triple flat spiral to a triple conical spiral below this temperature [1, 2].

Here, we report results concerning the role of Mn substitution by Fe on both the structural and magnetic properties in these alloys. Ribbons from this alloy series were prepared by arc-melting and subsequent melt spinning. The structure of the samples was studied by X-ray diffraction (XRD). In melt-spun state DyFe₆Ge₆ and DyMn₆Ge₆ have different structures than stabilized ones. Both possess metastable hexagonal TbCu₇-type structure (*P6/mmm* space group). The alloyed samples have the same crystalline structures, except DyMn_{5.5}Fe_{0.5}Ge₆, which is fully amorphous. The origin of such behaviour was already described for DyMn_{6-x}Ge_{6-x}Fe_xAl_x (0≤x≤6) [3]. ⁵⁷Fe Mössbauer spectroscopy at different temperatures was used to investigate the local magnetic ordering in DyMn_{6-x}Fe_xGe₆ series, in particular the atomic substitution effect. A progressive change from a magnetic to a quadrupolar hyperfine structure is observed. This trend is discussed in terms of the structural features of the alloyed samples and can be correlated with results of static magnetic measurements.

- [1] P.Schobinger-Papamantellos, F.B.Altorfer, J.H.V.J.Brabers, F.R.de Boer, K.H.J.Buschow, *J. Alloys Compd.* **203** (1994) 243
- [2] P.Schobinger-Papamantellos, J. Schefer, J.H.V.J.Brabers, K.H.J.Buschow, *J. Alloys Compd.* **215** (1994) 111
- [3] P. Kerschl, U.K. Röβler, T. Gemming, K.-H. Müller, Z. Śniadecki, B. Idzikowski, Appl. Phys. Lett. 90 (2007) 031903