The Physics of Superconducting Intermetallic Compound Mo₃Sb₇

V. H. Tran¹, R. T. Khan², E. Bauer², A. D. Hillier³, D. T. Adroja³, Z. P. Wiśniewski¹, W. Miiller¹, M. Batkova⁴, I. Batko⁴, Z. Pribulov'a⁴, Bukowski⁵

¹ Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wroclaw, Poland
² Institute of Solid State Physics, Vienna University of Technology, A-1040 Wien, Austria
³ ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, United Kingdom
⁴ Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
⁵ Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland

Using muon spin relaxation/rotation (μ SR), inelastic neutron scattering (INS), electron tunneling spectroscopy and electrical resistivity under pressures we investigated the normal and superconducting state of the superconductor Mo₃Sb₇.

 μ SR and INS provide evidence for the spin pseudogap opening below T* = 50 K. Based on these data the energy of spin pseudogap of 150(10) K was estimated. The existence of a weak magnetism in the dynamic susceptibility $\chi''(Q,\omega)$ and residual longitudinal field relaxation at 5 K imply a static ordering or quantum fluctuations.

The differential conductance dI/dV vs. *V* curve at 4.2 K shows that an energy pseudogap of $2\Delta \sim 15(5)$ meV is formed in the density of states. In the superconducting state, the tunneling spectra exhibit the presence of a BCS-type superconducting gap of $\Delta_{sc}(0) \sim 0.24$ meV, being to concur with the small gap derived from heat capacity and μ -spin rotation experiments.

A novel pressure-induced spin-density-wave transition in the superconductor Mo_3Sb_7 has been observed in the electrical resistivity and magnetization under hydrostatic pressure. The critical temperature of superconducting Mo_3Sb_7 is found to increase with increasing pressure, from 2.15 K at 0.2 kbar up to 2.37 K at 22 kbar. Above 4.5 kbar, superconductivity exists in parallel with a pressure-induced spin-density wave state, revealed by a sharp jump in the electrical resistivity and a maximum in the magnetization at the phase transition temperature T_{SDW} . The application of pressure shifts T_{SDW} to lower temperatures, from 6.6 K at 4.5 kbar down to 6.15 K at 22 kbar. A strong magnetic field dependence of T_{SDW} and a maximum seen in the magnetization indicate an antiferromagnetic character of T_{SDW} . The pressure dependence of T_c and T_{SDW} suggests a competition of the SDW and the superconducting states in this system.