XPS study of RNiSb₂ (R = Pr, Nd) compounds A. Szytuła¹, B. Penc¹, and A. Jezierski² ¹M. Smoluchowski Institute of Physics, Jagiellonian University Reymonta 4, 30-059 Kraków, Poland ²Institute of Molecular Physics, Polish Academy of Sciences M. Smoluchowskiego 17, 60-179 Poznań, Poland The electronic structure of the ternary RNiSb₂ (R = Pr, Nd) compounds which crystallize in the tetragonal primitive ZrCuSi₂-type structure was studied by X-ray photoemission spectroscopy. R 3d core-levels and valence bands were investigated. The X-ray photoemission spectroscopy results of PrNiSb₂ valence band are compared with the previously calculated density of states. The obtained results indicate that the valence bands are mainly determined by the Ni 3d band. The analysis of the XPS spectra of R $3d_{5/2}$ and R $3d_{3/2}$ on the basis of the Gunnarsson - Schönhammer model gives a hybridization of 4f orbitals with the conduction band. The experimental data concerning the valence band of these compounds are compared with the calculated data based on the KKR – CPA method. The calculated data for the room temperature (paramagnetic region) give the peaks corresponding to the R 4f states at the Fermi level $E_F = 0$. A different distribution of the peaks corresponding to the Ni 3d states is observed. For PrNiSb₂ three peaks at 2.0, 2.3 and 3.5 eV is observed while for NdNiSb₂ a broad maximum between 5.0 and 8.0 is visible. The experimental data for PrNiSb₂ are in good agreement with the calculated ones while those for NdNiSb₂ do not agree.