Properties of Fe_{73.5-x}Si_{13.5}B₉Cu₁Nb₃Mn_x alloys measured by Mössbauer spectroscopy R. Brzozowski¹, P. Uznański², K. Polański¹, P. Sovak³, and M. Moneta¹ ¹Surface Science Division, Department of Solid State Physics, University of Łódź Pomorska 149, 90-236 Łódź, Poland ²Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112, 90-363 Łódź, Poland ³Univerzita P.J. Šafárika, Prirodovedecká Fakulta, Park Angelinum 9, 04-101 Košice, Slovakia Amorphous alloys of Fe_{73.5-x}Si_{13.5}B₉Cu₁Nb₃Mn_x ($x = 1, 3 \div 15$) were analysed by means of Mössbauer spectroscopy (MS) as quenched at room temperature T_0 . At T_0 MS shows magnetic ordering for small values of x, weakening for larger values of x. The average hyperfine field $< H_{hf} >$ and centre shift < CS > as a function of x were found to decrease with increasing x. Fig. 1. Mössbauer spectra of $Fe_{73.5-x}Si_{13.5}B_9Cu_1Nb_3Mn_x$ measured at T_0 for different values of x. The amorphous structure of the alloys at T_0 was demonstrated by absence of any XRD line. The Mössbauer spectra are typical for the amorphous structure, with broad line widths caused by hyperfine parameters distribution related to many in-equivalent iron sites. The selected set of the spectra measured at T_0 is shown in Fig. 1 for the given x. It can be noted that the spectra became less and less ferromagnetic as x increases. The spectra were analysed by fitting sextets with distribution of hyperfine field H_{hf} and the quadruple splitting ε . Name of the presenting author (poster session II): Marek Moneta e-mail address: marek_moneta@uni.lodz.pl http://www.phys.uni.lodz.pl