Ab-initio calculations of ordering degree in Fe₃Si alloy doped with Mn and Cr

A. Go¹, M. Pugaczowa-Michalska², and L. Dobrzyński^{1,3}

¹Institute of Experimental Physics, University of Bialystok
Lipowa 41, 15-424 Bialystok, Poland
²Institute of Molecular Physics, Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland
³The Soltan Institute for Nuclear Studies, 05-400 Otwock-Świerk, Poland

Fe₃Si crystallises in the DO₃-type structure. Mössbauer spectroscopy indicates that small disorder between B and D sites is present in real materials [1, 2]. It means that some silicon atoms occupy B sites. This disordering is still present, while doping Fe₃Si with chromium [3]. In compound Fe_{3-x}Mn_xSi Mössbauer measurements indicated additionally partial disorder between (A,C) and D sites [4]. So far, we have carried out thorough theoretical investigations concerning Fe_{3-x}Cr_xSi [5-7] and Fe_{3-x}Mn_xSi [8] alloys under assumption that silicon atoms occupy D sites only. Because of some discrepancies between theoretical and experimental results, we suspected that experimentally found disorder should be taken into account. Thus we introduce now in calculations a small disorder between both B-D and (A,C)-D positions. Positions' exchange between only Fe and Si is taken into account. Doping atoms (Cr and Mn) are allowed to occupy only B and (A,C) sites. Ab-initio studies are carried out for pure Fe₃Si and for concentration x=0.125. TB-LMTO-ASA method within LSD approximation is applied.

Name of the presenting author (poster session I): Anna Go e-mail address: annago@alpha.uwb.edu.pl http://www.uwb.edu.pl

^[1] J.T.T. Kumaran, C. Bansal, Solid State Commun. 69 (1989) 779

^[2] L. Dobrzyński, J. Phys.: Cond. Matter 7 (1995) 1373

^[3] K. Szymański, L. Dobrzyński, D. Satuła, Proceedings of the International Conference of Physics, Leuven, Hyperfine Interactions (C) 1 (1995) 76

^[4] G.A. Al-Nawashi, S.H. Mahmood, A.F.D. Lehloch, A.S. Saleh, Physica B 321 (2002) 167

^[5] M. Pugaczowa-Michalska, A. Go, L. Dobrzyński, S. Lipiński, J. Magn. Magn. Mat. 256 (2003) 46

^[6] A. Go, M. Pugaczowa-Michalska, L. Dobrzyński, J. Magn. Magn. Mat. 272-276 (2004) e217

^[7] A. Go, M. Pugaczowa-Michalska, L. Dobrzyński, Molecular Physics Reports 38 (2003) 86

^[8] A. Go, M. Pugaczowa-Michalska, L. Dobrzyński, will be published.