Magnetic properties of Au/Co/Ni₈₀Fe₂₀/Co/Au layered structures

<u>K. Załęski</u>^{1,2}, M. Urbaniak¹, B. Szymański¹, M. Schmidt¹, J. Aleksiejew¹, and F. Stobiecki¹

¹Institute of Molecular Physics, Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland
²Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

Magnetic thin film layered structures characterized by new magnetic properties are desirable for applications in spintronic devices. This contribution concerns the magnetic properties of $\text{Co/Ni}_{80}\text{Fe}_{20}/\text{Co}$ trilayers sandwiched between gold layers. The main goal of this study was to develop a thin film system, characterized by easy plane anisotropy, in which the effective anisotropy field $H_{\text{K}}^{\text{eff}}$ (the saturation field for the perpendicular configuration) can be simply tailored in a wide range. This can be realized for systems having a strong perpendicular surface anisotropy, e.g. in Au/Co/Au layered systems. In such films, due to the competition between the shape and surface anisotropy, $H_{\text{K}}^{\text{eff}}$ monotonically increases with the Co thickness for $t_{\text{Co}} > t_{\text{crit}}$ (t_{crit} - critical cobalt thickness corresponding to the spin reorientation transition). The substitution of a single Co layer in the Au/Co/Au structure by $\text{Co/Ni}_{80}\text{Fe}_{20}/\text{Co}$ trilayer strongly modifies the effective anisotropy. In particular, a thin permalloy layer introduced in the middle of cobalt layer reduces t_{crit} and results in growth of $H_{\text{K}}^{\text{eff}}$ (Fig. 1). We will discuss application of $\text{Au/Co/Ni}_{80}\text{Fe}_{20}/\text{Co/Au}$ structures with different values of $H_{\text{K}}^{\text{eff}}$, for modification of the magnetoresistance characteristics (R(H) dependencies) in GMR layered films (for preliminary results see [1]).

Fig. 1. Effective anisotropy field $H_{\rm K}^{\rm \,eff}$ of Au/Co/Ni $_{80}$ Fe $_{20}$ /Co/Au films as a function of the total thickness of Co layers and different thickness of permalloy layer.

[1] F. Stobiecki et al., phys. stat. sol. (b) 243 (2006) 210.

Name of the presenting author (poster): Karol Załęski e-mail of corresponding author: Feliks.Stobiecki@ifmpan.poznan.pl url's: http://www.ifmpan.poznan.pl