Magnetic properties of Dy₅Pd₂ single crystal

M. Klimczak¹, E. Talik¹, J. Kusz¹, A. Winiarski¹ and R. Troć²

¹Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland ²Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okólna 2, P.O. Box 1410, 50-950 Wrocław 2, Poland

The R_5Pd_2 compounds were investigated by Berkowitz *et al.* [1]. They reported the existence of four new R_5Pd_2 -type (R=Gd, Tb, Dy, Ho) compounds. All these compounds crystallize in the cubic Dy_5Pd_2 - type of crystal structure which belongs to the space group Fd3m [2]. Recently, the magnetic properties of R_5Pd_2 (R=Tb, Dy, Ho, Er) intermetallic compounds were carried out [3]. The samples were obtained in polycrystalline form by the induction melting. The electrical resistivity, ac and dc magnetic susceptibility measurements show a complex transport and magnetic behaviour of these compounds mainly due to the frustration effect. The aim of this work was to obtain a good quality single crystal of Dy_5Pd_2 , parameter thermal variation and magnetic measurements. Fig. 1 shows the X-ray Berg-Barrett topography of the Dy_5Pd_2 single crystal, grown by the Czochralski method from a levitated melt, witch confirms good quality of the obtained crystal. This compound crystallized in the cubic Dy_5Pd_2 - type of crystal structure. The lattice parameter was a=13.52 Å.

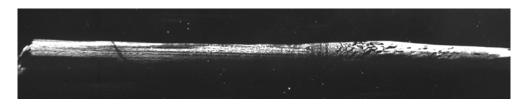


Fig. 1. Berg–Barrett topography of Dy₅Pd₂ single crystal.

The temperature dependence of the unit cell volume V of $\mathrm{Dy_5Pd_2}$ was measurement. The unit cell volume V decrease linearly from 300 down to 50 K. Below this temperature the unit cell volume keeps almost constant values down to 10 K.

Name of the presenting author (poster): Monika Klimczak e-mail address: talik@us.edu.pl url's: http://www.us.edu.pl

^[1] A. E. Berkowitz, F. Holtzberg, S. Methfessel, J. Appl. Phys., 35 (1964) 1030.

^[2] M. L. Fornasini, A. Palenzona, J. Less Common Metals 38 (1974) 77.

^[3] M. Klimczak, E. Talik, A. Winiarski, R. Troć, J. Alloys and Compounds, in press.