Magnetisation and electron spin resonance of the colossal magnetoresistive La_{0.67}Ca_{0.33}Mn_{1-x} Fe_xO₃ <u>T. Zając</u>¹, L. Folcik², A. Kołodziejczyk¹, J. Chmist¹, H. Drulis², K. Krop¹, and G. Gritzner³ ¹Faculty of Physics and Applied Computer Science AGH University of Science and Technology, 30-059 Kraków, Poland ²Institute of Low Temperature and Structure Research, Polish Academy of Sciences 50-950 Wrocław, Poland ³Institut für Chemische Technologie Anorganischer Stoffe Johannes Kepler Universität, A-4040 Linz, Austria We report magnetisation and electron spin resonance (ESR) measurements on colossal magnetoresistive manganites $La_{0.67}Ca_{0.33}Mn_{1-x}$ Fe_xO_3 with x=0, 0.01, 0.03, 0.06, 0.10 and 0.15 in the vicinity of the magnetic (T_C) and metal-insulator (T_M) transition temperatures, (see Fig. 1). Above T_C the resonance lines with $g \cong 2$ are caused by the ferromagnetic metallic clusters, exhibiting the double exchange interaction between Mn^{3+} - Mn^{4+} ions [1]. The lines were observed with cooling far below both T_C and T_M and were fitted by Dysonian line shape (see Fig. 2). Temperature dependences of the linewidths (ΔB) exhibited a minimum value at $T^* \cong 1.25$ T_C followed by an increase of the width with further cooling toward T_C . The anomalous behaviour of ΔH_{pp} below T^* is due to an appearance of a ferromagnetic metallic phase within the paramagnetic matrix. The role of phase segregation in which the compounds is phase-separated into a mixture of ferromagnetic and paramagnetic regions is discussed. Fig. 1. Magnetisation vs temperature Fig. 2. Resonance line width vs temperature [1] T. Zając et al., J. Magn. Magn. Mater. 272-276 (2004) 120. Name of the presenting author (poster): Tomasz Zając e-mail address: tzając1@tlen.pl / A. Kołodziejczyk: akolo@uci.agh.edu.pl url's: http://www.ftj.agh.edu.pl