Magnetic and electronic properties of Ho(Co_{1-x}Fe_x)₂ system

G. Chełkowska¹, D. Stysiak¹, M. Neumann², and I. Dębiec¹

¹A. Chełkowski Institute of Physics, University of Silesia Uniwersytecka 4, 40-007 Katowice, Poland ²Fachbereich Physik, Universität Osnabrück, Germany

Results of measurements of the magnetic susceptibility, the electrical resistivity, the crystal and electronic structures of the polycrystalline intermetallic compounds $Ho(Co_{1-x}Fe_x)_2$ are presented. The effect of the partial substitution Co by Fe reflects in an increase of the lattice parameters and the Curie temperature $T_C(x)$. The first order phase transition which is observed in $HoCo_2$, reflected in an almost discontinuous change in the resistivity at T_C and with a double peak structure of the magnetic susceptibility $\chi_{AC}(T)$ (Fig. 1), switches to the transition of the second order upon the substitution of 3% of Co by iron atoms. The electronic structure of the investigated system was studied by using X-ray photoemission spectroscopy (XPS). The obtained results show that the valence bands are dominated mainly by the Ho 4f and hybridised Fe/Co 3d states. The position and shape of the 3d bands depends clearly on the composition.

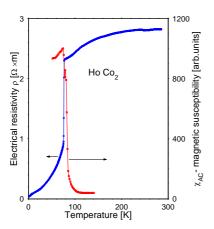


Fig. 1. Electrical resistivity and magnetic susceptibility of the $HoCo_2$ compound

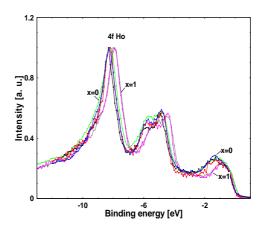


Fig. 2. The XPS valence band spectra for $Ho(Fe_{1-x}Co_x)_2$ system

Name of the presenting author (poster): Grażyna Chełkowska e-mail address: gchelkow@us.edu.pl

url's: http://www.zfcst.us.edu.pl