Electrical resistivity of RNi₄Cu and RNi₄Al

T. Toliński¹, V. Ivanov², and A. Kowalczyk¹

¹Institute of Molecular Physics, Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland
²General Institute of Physics, Russian Academy of Sciences, Vavilov 38, Moscow, Russia

A comparative studies of the temperature dependence of resistivity for RNi₄Cu and RNi₄Al compounds (R = Y or rare earth) are presented. Both series of compounds crystallize in the hexagonal CaCu₅-type of structure. It is observed that the temperatures of the transition between the paramagnetic and the magnetically ordered state are well identified on the $\rho(T)$ curves as a sharp change of the slope and they are in a good agreement with the previous magnetic studies [1-4]. The residual resistivity ρ_0 of RNi₄Al is several times higher than for RNi₄Cu but the last one has ρ_0 still twice the values for the previously studied RNi₄B [5]. The compounds YNi₄Cu and YNi₄Al are included in these studies as the nonmagnetic isostructural reference materials. The phonon contribution has been determined for both Y-based compounds employing the Bloch-Grüneisen formula. The paramagnetic CeNi₄Cu and CeNi₄Al compounds show a shallow minimum in $\rho(T)$ at low temperatures (about 15 K). This anomaly has been ascribed to a Kondo impurity - like behavior. For the other rare earths, the $\rho(T)$ dependences below T_C have been analyzed assuming the scattering on magnons as the predominant mechanism.

Name of the presenting author (oral): Tomasz Toliński

e-mail address: tomtol@ifmpan.poznan.pl url's: http://www.ifmpan.poznan.pl

^[1] T. Toliński, W. Schäfer, W. Kockelmann, A. Kowalczyk, A. Hoser, Phys. Rev. B 68 (2003) 144403.

^[2] T. Toliński, A. Kowalczyk G. Chełkowska, M. Pugaczowa-Michalska, B. Andrzejewski, V. Ivanov, A. Szewczyk, M. Gutowska, Phys. Rev. B 70 (2004) 064413.

^[3] T. Toliński, A. Kowalczyk, A. Szlaferek, B. Andrzejewski, J. Kováč, M. Timko, J. Alloys Compd. 347 (2002) 31.

^[4] A. Kowalczyk, T. Toliński, B. Andrzejewski, A. Szlaferek, submitted

^[5] T. Toliński, A. Kowalczyk, V. Ivanov, phys. stat. sol. (b) 240 (2003) 153.